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Motivation

• Diversity plays a crucial role in evolutionary computation (EC)
• Diversity

• prevents premature convergence
• enables successful crossover
• allows to compute sets of Pareto-optimal solutions for
multi-objective problems

Diversity

• Majority of approaches consider diversity in obj. space.
• Ulrich/Thiele [UT11] considered diversity in search space (see,
e. g., Tamara Ulrich’s PhD thesis [Ulr12])

• Diversity with respect to other properties (features) could be
useful in various domains.

Goal

• Compute a set of good solutions that differ in terms of
interesting properties/features.
Think of good designs that vary with respect to important properties.

• The goal is to maximize diversity for a set of high-quality
solutions.
This is different from the standard use of diversity in EC where diversity
is used to avoid premature convergence.

Application Areas

• Present set of diverse high-quality solutions (instead of single
one) to enable discussion for further refinement.

• See how good solutions distribute with respect to important
features of solutions.

• Understand algorithm performance with respect to important
features through diverse instances.

• Construct diverse sets of problem instances or algorithm
selection (AS).
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Evolutionary Diversity Optimization (EDO)

Illustration for single-obj. continuous function f : X → R
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Global Optimization: Find x ∈ X with f(x) = minx′∈X f(x).
; EA: take best solution of n runs.

Evolutionary Diversity Optimization (EDO)

Illustration for single-obj. continuous function f : X → R
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Multi-Modal Optimization (hand-wavy): find subset S ⊆ X such that
each x ∈ S is locally (or globally) optimal.
; EA: take several solutions of one or multiple runs.
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Evolutionary Diversity Optimization (EDO)

Illustration for single-obj. continuous function f : X → R
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(Evol.) Diversity Optimization: Find set P of µ solutions such that

P = argmaxP′⊆Xv,|P′|=µ
D(P′) with Xv = {x ∈ X | f(x) ≤ v}

where D : P(X ) → R measures diversity in decision space.

Relation to Similar Approaches

Novelty Search (NS)
• Novelty Search [LS11; DLC19] algorithm only searches for
behavioral diversity with no notion of quality.

• Behaviors that are maximally distant from previously discovered
behaviors are rewarded.

Quality Diversity1

• QD algorithm [PSS16] is used to discover diverse optimal
solutions.

• Capable of producing a large array of solutions constituting
different low-dimensional behaviors / design features.

• Just recently used to find high-quality solutions for the Traveling
Thief Problem [NNN21]2 and for TSP instance generation [BN22]3.

1https://www.youtube.com/watch?v=nyOPJxY--kA
2https://arxiv.org/abs/2112.08627
3https://arxiv.org/abs/2202.02077

Mixed Multi-Objective Optimization

Mixed Multi-Objective Optimization 4

Goal: Find µ-size population P such that

P = argmaxP′⊆Xv,|P′|=µ
D(P′) with Xv = {x ∈ X | f(x) ≤ v}.

• Fitness f maps each individual to an objective value.
• Diversity measure D : P(X ) → R maps the whole solution set to
an objective / diversity value.

4Tamara Ulrich and Lothar Thiele. “Maximizing population diversity in single-objective
optimization”. In: 13th Annual Genetic and Evolutionary Computation Conference,
GECCO 2011, Proceedings, Dublin, Ireland, July 12-16, 2011. Ed. by Natalio Krasnogor and
Pier Luca Lanzi. ACM, 2011, pp. 641–648. DOI: 10.1145/2001576.2001665.

NOAH Algorithm

In a Nutshell
Three steps in each iteration:

1. Optimize objective f
; focus on generating good / better solutions.

2. Adapt quality barrier b
; balance objective and diversity optimization by maintaining a monotonically
decreasing bound b.

3. Optimize diversity D(P)
; ... under the constraint that all solutions stick to quality barrier.

Algorithm 1: Mixed Multi-Objective optimization algorithm NOAH [UT11]

1 Initialize population P with µ random solutions;
2 b←∞;
3 while (b > v) and termination condition not satisfied do
4 P← ObjOpt(P, g, b); // Optimize f
5 (P, b)← BoundChange(P, b, r); // Adapt quality threshold
6 P← DivOpt(P, n, b, c); // Optimize diversity D

7 Return P;
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A Suitable Diversity Measure

The authors use the following measure:

Solow-Polasky Diversity [SP94]
Given a µ-size population P = {P1, . . . , Pµ} and pairwise distances
d(Pi,Pj) for 1 ≤ i, j ≤ µ, let

M = [mij]1≤i,j≤µ with mij = exp
(

−θ · d(Pi,Pj)
)

.

Then the Solow-Polasky measure is given by

D(P) =
∑

1≤i,j≤µ

M−1
ij ∈ [1, µ].

• D(P) “... can be interpreted as the number of different species
found in the population ...” [UT11].

• Choice of θ not critical under reasonable assumptions.
• Reasonable computational complexity.

Quality Diversity

Quality Diversity (QD)

1. Produce many solutions with a diverse set of
features/behaviors.

2. Computing the high quality of solutions.

Novelty Search and Local Competition

• Novelty Search (NS) [LS11] algorithm only searches for
behavioral diversity.

• Behaviors that are maximally distant from previously discovered
behaviors are rewarded.

• NS uses the k-nearest-neighbor (k-NN) algorithm and local
fitness completions score.
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MAP-Elites

• The Multi-Dimensional Archive of Phenotypic Elites algorithm
(MAP-Elites; [Mouret]) produces a large diversity of
high-performing and qualitatively different solutions.

• The descriptor space is discretize and represented as a grid to
form the collection of solutions.

EDO for TSP Instance Generation

Motivation and Goals

• Heuristic algorithms perform very well in many situations.
• Understanding the conditions under which heuristics perform
well is curcial for ...
1. Understanding strengths and weaknesses of said algorithm;

may lead to, e.g., better operator design.
2. Automated per instance Algorithm Selection (AS).

Automated Algorithm Selection

Originally proposed by Rice [Ric76]:

Problem Space

I = {I1, . . . , In(I)}

Feature Space

f(I) ∈ F

Algorithm Space

A = {A1, . . . , An(A)}

Perf. Space

p ∈ R

Machine Learning
Selector

S : F → A

f : I → F ⊂ Rm(1) p : A × I → R(2)

(3)

Figure 1: Schema of model building phase of the algorithm selection model
with characterizing features. Loosely inspired by Figure 3 in [Ric76].
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The Travailing Salesperson Problem

Traveling Salesperson Problem (TSP)
Given a set of n nodes V and pairwise
distances d(vi, vj) we aim for minimum
length round-trip tour, i.e., a permutation
π = (π1, . . . , πn) that minimizes

TSP(π) = d(πn, π1) +
n−1
∑

i=1

d(πi, πi+1).
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TSP Instance Features

It is reasonable to assume that (TSP) solver performance is strongly
impacted by structural properties of TSP instances5 such as:

• The number of nodes.
• Existence of groups / clusters.
• Summary statistics of pairwise distances.
• Number of weak / strong connected components of the
k-Nearest Neighbor Graph (k-NNG).

• …

5Imagine a TSP instance where all nodes are aligned on a cycle. Easy for almost all
solvers!

Easy and Hard TSP Instances

Q: How do easy (hard) TSP instances for a heuristic, say 2-Opt, look
like in feature space?

• If we know that certain feature values / ranges make an
instance hard, we could try to construct instances with such
feature values
; this is very difficult in general [SHL10]

• Construct by mathematical reasoning
; tedious task; often very artificial instances.

• Let EAs do the work[SHL10; Mer+12; Nal+13]: start with a random
instance, perform minor perturbation and optimize the
approximation ratio

αA(I) =
A(I)
OPT(I) .

Diversity in TSP Feature Space

Problem
Feature space range covered by evolved instances rather small in
classical approaches, e.g. in [Mer+12].

Measuring Diversity [GNN16]
Let I1, . . . , Iµ be the elements of the population and
f(I1), . . . , f(Ik) ∈ [0,R] their feature values. Further assume that
f(I1) ≤ f(I2) ≤ . . . ≤ f(Iµ). Let Ii be such that f(Ii) ̸= f(I1) and
f(Ii) ̸= f(Iµ). Then we set the feature-based diversity contribution as

f(Ii)f(Ii−1) f(Ii+1)

(f(Ii)− f(Ii−1)) (f(Ii+1)− f(Ii))

d(Ii, P) = (f(Ii)− f(Ii−1)) · (f(Ii+1)− f(Ii))
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TSP Feature Diversity - Results

Figure 2: Distribution of feature centroid_mean_distance_to_centroid
feature values of a population consisting of 100 different hard or easy TSP instances.
e=easy, h=hard, a=classical, b=diversity.

More TSP Diversity: A Different Approach

Problem
Evolved instances, though different in feature space, “look” very
similar.6

Easy for EAX
(simple)

PAR10: 0.92 vs 36000.00

Easy for EAX
(simple)

PAR10: 1.17 vs 36000.00

Easy for EAX
(simple)

PAR10: 1.19 vs 36000.00

Easy for EAX
(simple)

PAR10: 1.25 vs 32497.80

Easy for EAX
(simple)

PAR10: 1.47 vs 32596.95

Easy for LKH
(simple)

PAR10: 0.51 vs 10.50

Easy for LKH
(simple)

PAR10: 0.80 vs 18.91

Easy for LKH
(simple)

PAR10: 0.87 vs 22.78

Easy for LKH
(simple)

PAR10: 1.00 vs 24.80

Easy for LKH
(simple)

PAR10: 4.88 vs 34.12

Figure 3: Each 5 instances that are easy for EAX and hard for LKH (top) and
vice versa (bottom).

6In fact they look more or less random uniform.

More TSP Diversity: A Different Approach

Creative Mutation Operators [Bos+19]
No explicit diversity preservation / focus in the EA at all. Instead,
modify the mutation operators such that they have a much higher
impact on the points.

Operator: InitialSolution Operator: Explosion Operator: Implosion
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Figure 4: Explosion and implosion operators.

More TSP Diversity: A Different Approach (cont.)

Operator: Cluster Operator: Expansion Operator: Compression Operator: LinearProjection Operator: Grid

Operator: InitialSolution Operator: Normal Operator: Uniform Operator: Explosion Operator: Implosion
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Mutation applied yes no

Figure 5: All operators proposed in [Bos+19].
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A Different Approach: Some Results

Easy for EAX
(sophisticated)

PAR10: 0.73 vs 32487.13

Easy for EAX
(sophisticated)

PAR10: 0.86 vs 32668.00

Easy for EAX
(sophisticated)

PAR10: 0.87 vs 32689.91

Easy for EAX
(sophisticated)

PAR10: 0.89 vs 36000.00

Easy for EAX
(sophisticated)

PAR10: 0.93 vs 36000.00

Easy for LKH
(sophisticated)

PAR10: 0.35 vs 1.18

Easy for LKH
(sophisticated)

PAR10: 0.78 vs 4.78

Easy for LKH
(sophisticated)

PAR10: 1.17 vs 2.63

Easy for LKH
(sophisticated)

PAR10: 1.57 vs 14.37

Easy for LKH
(sophisticated)

PAR10: 7.52 vs 59.44

Figure 6: Each 5 instances that are easy for EAX and hard for LKH (top) and
vice versa (bottom) evolved by using the new mutation operators.

A Different Approach: Some Results

Feature Pair P1

0 10 20 30 40

0.25

0.50

0.75

1.00

nng_5_strong_weak_ratio

n
n
g
_
5
_
s
tr

o
n
g
_
c
o
m

p
o
n
e
n
ts

_
m

a
x
_
n
o
rm Feature Pair P2

0 10 20 30 40

1e+05

2e+05

3e+05

nng_5_strong_weak_ratio

c
lu

s
te

r_
0
1
p
c
t_

m
e
a
n
_
d
is

ta
n
c
e

Feature Pair P3

100000 120000 140000

15000

20000

hull_dists_sd

n
e
a
re

s
t_

n
e
ig

h
b
o
u
r_

m
e
d
ia

n

Feature Pair P4

4 5 6 7 8 9
21000

23000

25000

27000

29000

31000

mst_depth_median

m
s
t_

d
is

ts
_
m

e
a
n

Group

Easy for EAX
(simple)

Easy for EAX
(sophisticated)

Easy for LKH
(simple)

Easy for LKH
(sophisticated)

RUE

Figure 7: Evolved instances in different feature spaces spanned by each two
features with classical operators (simple) and new operators (sophisticated).

EDO for Images

EDO for Images: Key Idea

• Produce diverse image sets using evolutionary computation
methods [AKN17].

• Use a (µ+ λ)-EAD for evolving image instances.
• Select the individuals based on their contribution to diversity of
the image.
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EDO for Images

• We use a (µ+ λ)-EAD for evolving image instances.
• Knowledge on how we can combine different image features to
produce interesting image effects.

• Study how different combinations of image features correlate
when images are evolved to maximize diversity.

The (µ+ λ-EAD

Algorithm: Diversity maximizing (µ+ λ) EAD [AKN17]
Input: An image S
Output: A population P = {I1, . . . , Iµ} of image variants.

1 P← {mutate(S), …, mutate(S)};
; // µ mutated copies of source

2 repeat
3 Randomly select C ⊆ P where |C| = λ;
4 for I ∈ C do
5 Produce I′ = mutate(I);
6 if valid(I′) then
7 add I′ to P;

8 while |P| > µ do
9 Remove an individual I = argminJ∈Pd(J, P);

10 until termination condition reached;

Feature Diversity Measure

Measuring Diversity [GNN16]
Let I1, . . . , Iµ be the elements of the population and
f(I1), . . . , f(Ik) ∈ [0,R] their feature values. Further assume that
f(I1) ≤ f(I2) ≤ . . . ≤ f(Iµ). Let Ii be such that f(Ii) ̸= f(I1) and
f(Ii) ̸= f(Iµ). Then we set the feature-based diversity contribution as

f(Ii)f(Ii−1) f(Ii+1)

(f(Ii)− f(Ii−1)) (f(Ii+1)− f(Ii))

d(Ii, P) = (f(Ii)− f(Ii−1)) · (f(Ii+1)− f(Ii))

Single-Dim. Feature Experiments
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Single-Dim. Feature Experiments Two-Dim. Feature Experiments

Multiple Features

• For 2 or more features, weightening of diversity contributions
might not lead to good diversity.

• Results depend on chosen weightening.

Questions

• What is a good diversity measure?
• What is the diversity optimization goal?

Discrepancy-Based EDO
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Discrepancy-Based EDO: Goal and Key Idea

• Design new approach of discrepancy-based EDO [Neu+18].
• Construct sets of solutions for evolved images and instances of
the TSP.

Discrepancy-Based EDO

• New approach for discrepancy-based evolutionary diversity
optimization.

• Investigate the use of the star discrepancy measure for diversity
optimization for images.

• Introduce an adaptive random walk mutation operator based on
random walks.

• Compare to other approaches for images [AKN17].

Discrepancy-Based EDO: Example Runs Star Discrepancy

Given a set for points X = {s1, . . . , sn} ⊆ S with S = [0, 1]d. Let

, [a,b] := [a1,b1]× . . .× [ad,bd].

Then, the star discrepancy is defined as

D(X,B) := sup{Vol([a,b])− |X ∩ [a,b]|/n | a ≤ b ∈ [0, 1]d}
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Discrepancy-Based EDO for Images Discrepancy-Based EDO for Images

Discrepancy-Based EDO for TSP Discrepancy-Based EDO for TSP
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Multi-Objective Indicator-Based
EDO

Indicator-Based MOO

• Let I be a search point
• Let f : X → R

d be a function that assigns to each search point
I ∈ X an objective vector.

• Let q : X → R be a function that measures constraint violations.
• We require q(I) ≥ α for all ”good” solutions.

• A multi-objective (MO) indicator D : 2X → R measures the
quality of a given set of search points.

Goal

Compute set P = {I1, . . . , Iµ} of µ solutions maximizing (minimizing)
D among all sets of µ solutions under the condition that q(I) ≥ α

holds for all I ∈ P, where α is a given quality threshold.

Multi-Objective Performance Indicators

Popular indicators in the field are given an approximation set S and
a reference set R / reference point r:

• Dominated Hypervolumne (HYP):

HYP(S, r) := VOL
(

∪

s∈S
[r1, s1]× . . .× [rd, sd]

)

• Inverted Generational Distance (IGD):

IGD(S,R) := 1
|R|
∑

r∈R
min
s∈S

d(r, s)

• Additive ε-Indicator (EPS):

EPS(S,R) := max
r∈R

min
s∈S

max
1≤i≤d

(si − ri)

Idea: How to Use MO-Indicators for EDO?

• Diversity optimization aims to compute a diverse set of
solutions for a given single-objective problem.

• Multi-objective indicators guide the search towards a diverse
set of Pareto-optimal solutions.

Use of multi-objective indicators [Neu+19]:

• Transform feature vectors of search points to make them
(artificially) incomparable.

• Apply multi-objective indicators after transformation has
occurred.
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Generic Algorithm

Algorithm 3: Diversity maximizing (µ+ λ) EA [Neu+19]

1 Initialize the population P with µ instances of quality at least α;
2 Let C ⊆ P where |C| = λ;
3 For each I ∈ C, produce an offspring I′ of I by mutation. If q(I′) ≥ α, add I′ to

P;
4 While |P| > µ, remove the individual with the smallest loss to the diversity

indicators D;
5 Repeat steps 2 to 4 until a termination criterion is reached;

MO-Indicator-Based EDO for Images

MO-Indicator-Based EDO for Images MO-Indicator-Based EDO for TSP
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MO-Indicator-Based EDO for TSP Results

• We proposed a new approach for EDO.
• We demonstrated that multi-objective performance indicators
can be used to achieve a good diversity of sets of solutions
according to a given set of features.

• The advantages of our approaches are (i) their simplicity and (ii)
the quality of diversity achieved as measured by the respective
indicators.

• We have shown that the best performing approaches use HYP or
IGD as indicators, and often even outperform the
discrepancy-based approach.

Questions

• What type of features are good to characterize problem
instances of a given problem (e.g. TSP) for a particular algorithm.

• What is a good diversity measure?
• What is the runtime behavior of EAs maximizing
search-space/feature diversity?

• How do we compute diverse sets of high quality solutions for
important combinatorial optimization problems?

• How do we adjust state of the art solver to compute diverse sets
of solutions (instead of a single one)

Diversity Optimization for TSP
Tours
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TSP Tour Diversity

Motivation

• We already investigated feature-diversity of TSP instances.
• Now, we study the TSP in the context of diversity optimization by
focusing on the diversity of tours themselves, not their
qualities [Do+20].

Problem Formulation

We are given a (complete) edge-weighted graph G = (V, E, c) with
cost function c : E→ R

+. Let n = |V|,m = |E| = n(n− 1)/2. Given
parameters µ ≥ 2 and α > 0 find a population P, |P| = µ, such that

c(T) ≤ (1+ α)OPT ∀T ∈ P

and P is maximally diverse with respect to some diversity measure D.

Diversity maximizing (µ+ 1) EA

Algorithm 4: Diversity maximizing (µ+ 1) EA [Do+20]

1 Initialize the population P with µ TSP tours such that c(T) ≤ (1+ α) · OPT for
all T ∈ P;

2 Choose T ∈ P uniformly at random and produce an offspring T′ of T by
mutation;

3 If c(T′) ≤ (1+ α) · OPT, add T′ to P;
4 If |P| = µ+ 1, remove exactly one individual T, where

T = argminJ∈P D(P \ {J}), from P;
5 Repeat steps 2 to 4 until a termination criterion is reached;

Maximizing Edge Diversity

Intuitively: Each edge should be used in as few tours as possible (in
at most one tour if possible).

• Edge Diversity (ED): Equalize frequencies of edges.

ED(P) =
∑

T1∈P

∑

T2∈P
|E(T1) \ E(T2)| = µ(µ− 1)n+

∑

i

ni −
∑

i

n2i .

• Pairwise Distances (PD): Equalizing pairwise edge distances
between tours.

Theorem

For every pair of integers µ ≥ 1 and n ≥ 3, given a complete graph
G = (V, E) where |V| = n, there is a µ-size population P of tours such
that

max
e∈E

{n(e,P)} −min
e∈E

{n(e,P)} ≤ 1.

Unconstrained Case

All tours meet the quality criterion (α = ∞).
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Constrained Case Exemplary Populations

Figure 8: Visualized tour populations from resulted populations in eil51
cases with µ = 10 and 2-OPT as mutation operator. Red edges are shared by
at least two tours in the population, and blue ones are unique to the tour.

Outlook and Conclusions

Outlook: runtime complexity

Theory: Runtime Results /
So far pretty sparse list of results:

• [GN14] study the maximization of population diversity on
OneMax and LeadingOnes, [DGN16] for OneMinMax.

• [Do+21] studies EDO on permutation problem TSP and QAP,
[BN21] on MSTs. More results on well-known combinatorial
optimization problems desirable.

• One of the major challenges: given a diversity measure, how
does a maximally diverse population of size µ look like?

• Call for participation ,
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