Evolutionary Diversity Optimization for Combinatorial Optimization

Tutorial at GECCO'22, Boston, USA

Jakob Bossek¹ Aneta Neumann² Frank Neumann²

¹AI Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany ²Optimisation and Logistics Group, School of Computer Science, The University of Adelaide, Australia

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on severes or to redistribute to lists, requires prior specific permission and for a fee. Request permissions from permissions@acm.org. GECCO 22 Companion, July 9-13, 2022, Boston, MA, USA.

©2022 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-9268-6/22/07_515.00

https://doi.org/10.1145/5329394.3533626

Diversity

- · Majority of approaches consider diversity in obj. space.
- Ulrich/Thiele [UT11] considered diversity in search space (see, e. g., Tamara Ulrich's PhD thesis [Ulr12])
- Diversity with respect to other properties (features) could be useful in various domains.

Goal

 Compute a set of good solutions that differ in terms of interesting properties/features.

Think of good designs that vary with respect to important properties.

 The goal is to maximize diversity for a set of high-quality solutions.

This is different from the standard use of diversity in EC where diversity is used to avoid premature convergence.

Motivation

- · Diversity plays a crucial role in evolutionary computation (EC)
- · Diversity
 - · prevents premature convergence
 - · enables successful crossover
 - allows to compute sets of Pareto-optimal solutions for multi-objective problems

Application Areas

- Present set of diverse high-quality solutions (instead of single one) to enable discussion for further refinement.
- See how good solutions distribute with respect to important features of solutions.
- Understand algorithm performance with respect to important features through diverse instances.
- Construct diverse sets of problem instances or algorithm selection (AS).

Outline

Early Results by Ulrich & Thiele

Quality Diversity

EDO for TSP Instance Generation

EDO for Images

Discrepancy-Based EDO

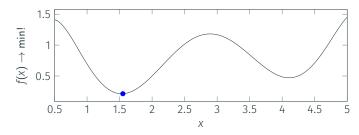
Multi-Objective Indicator-Based EDO

Diversity Optimization for TSP Tours

Outlook and Conclusions

Evolutionary Diversity Optimization (EDO)

Illustration for single-obj. continuous function $f: \mathcal{X} \to \mathbb{R}$

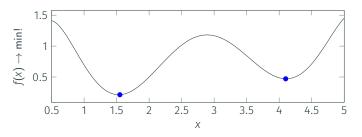


Global Optimization: Find $x \in \mathcal{X}$ with $f(x) = \min_{x' \in \mathcal{X}} f(x)$. \Rightarrow EA: take best solution of n runs.

Early Results by Ulrich & Thiele

Evolutionary Diversity Optimization (EDO)

Illustration for single-obj. continuous function $f: \mathcal{X} \to \mathbb{R}$

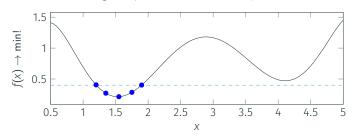


Multi-Modal Optimization (hand-wavy): find subset $S \subseteq \mathcal{X}$ such that each $x \in S$ is locally (or globally) optimal.

 \sim EA: take several solutions of one or multiple runs.

Evolutionary Diversity Optimization (EDO)

Illustration for single-obj. continuous function $f: \mathcal{X} \to \mathbb{R}$



(Evol.) Diversity Optimization: Find set P of μ solutions such that

$$P = \arg \max_{P' \subset \mathcal{X}_{V}, |P'| = \mu} D(P') \text{ with } \mathcal{X}_{V} = \{x \in \mathcal{X} \mid f(x) \leq V\}$$

where $D: \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ measures diversity in decision space.

Mixed Multi-Objective Optimization

Mixed Multi-Objective Optimization 4

 $\textbf{Goal} : \ \mathsf{Find} \ \mu\text{-size population} \ P \ \mathsf{such that}$

$$P = \arg \max_{P' \subset \mathcal{X}_{V}, |P'| = \mu} D(P') \text{ with } \mathcal{X}_{V} = \{x \in \mathcal{X} \mid f(x) \leq v\}.$$

- Fitness f maps each individual to an objective value.
- Diversity measure $D: \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ maps the whole solution set to an objective / diversity value.

Relation to Similar Approaches

Novelty Search (NS)

- Novelty Search [LS11; DLC19] algorithm only searches for behavioral diversity with no notion of quality.
- Behaviors that are maximally distant from previously discovered behaviors are rewarded.

Quality Diversity¹

- QD algorithm [PSS16] is used to discover diverse optimal solutions.
- Capable of producing a large array of solutions constituting different low-dimensional behaviors / design features.
- Just recently used to find high-quality solutions for the Traveling Thief Problem [NNN21]² and for TSP instance generation [BN22]³.

```
¹https://www.youtube.com/watch?v=nyOPJxY--kA
```

NOAH Algorithm

In a Nutshell

Three steps in each iteration:

- 1. Optimize objective *f*
 - → focus on generating good / better solutions.
- 2. Adapt quality barrier b
 - \sim balance objective and diversity optimization by maintaining a monotonically decreasing bound b.
- 3. Optimize diversity D(P)
 - \sim ... under the constraint that $\underline{\text{all}}$ solutions stick to quality barrier.

Algorithm 1: Mixed Multi-Objective optimization algorithm NOAH [UT11]

```
1 Initialize population P with \mu random solutions; 2 b \leftarrow \infty; 3 while (b > v) and termination condition not satisfied do
```

```
4 P \leftarrow \mathsf{ObjOpt}(P,g,b); // Optimize f
5 (P,b) \leftarrow \mathsf{BoundChange}(P,b,r); // Adapt quality threshold
6 P \leftarrow \mathsf{DivOpt}(P,n,b,c); // Optimize diversity D
```

7 Return P;

⁴Tamara Ulrich and Lothar Thiele. "Maximizing population diversity in single-objective optimization". In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Proceedings, Dublin, Ireland, July 12-16, 2011. Ed. by Natalio Krasnogor and Pier Luca Lanzi. ACM, 2011, pp. 641–648. DOI: 10.1145/2001576.2001665.

²https://arxiv.org/abs/2112.08627

³https://arxiv.org/abs/2202.02077

A Suitable Diversity Measure

The authors use the following measure:

Solow-Polasky Diversity [SP94]

Given a μ -size population $P = \{P_1, \dots, P_{\mu}\}$ and pairwise distances $d(P_i, P_j)$ for $1 \le i, j \le \mu$, let

$$M = [m_{ij}]_{1 < i,j < \mu}$$
 with $m_{ij} = \exp(-\theta \cdot d(P_i, P_i))$.

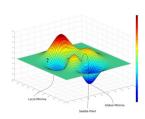
Then the Solow-Polasky measure is given by

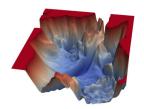
$$D(P) = \sum_{1 \le i,j \le \mu} M_{ij}^{-1} \in [1,\mu].$$

- D(P) "... can be interpreted as the number of different species found in the population ..." [UT11].
- Choice of θ not critical under reasonable assumptions.
- · Reasonable computational complexity.

Quality Diversity (QD)

- 1. Produce many solutions with a diverse set of features/behaviors.
- 2. Computing the high quality of solutions.





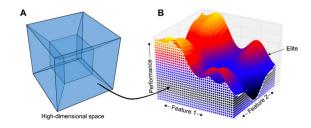
Quality Diversity

Novelty Search and Local Competition

- Novelty Search (NS) [LS11] algorithm only searches for behavioral diversity.
- Behaviors that are maximally distant from previously discovered behaviors are rewarded.
- NS uses the *k*-nearest-neighbor (*k*-NN) algorithm and local fitness completions score.

MAP-Elites

- The Multi-Dimensional Archive of Phenotypic Elites algorithm (MAP-Elites; [Mouret]) produces a large diversity of high-performing and qualitatively different solutions.
- The descriptor space is discretize and represented as a grid to form the collection of solutions.



Motivation and Goals

- · Heuristic algorithms perform very well in many situations.
- Understanding the conditions under which heuristics perform well is curcial for ...
 - 1. Understanding strengths and weaknesses of said algorithm \sim may lead to, e.g., better operator design.
 - 2. Automated per instance Algorithm Selection (AS).

EDO for TSP Instance Generation

Automated Algorithm Selection

Originally proposed by Rice [Ric76]:

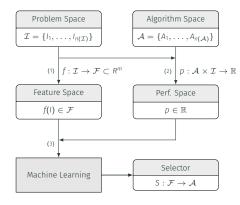


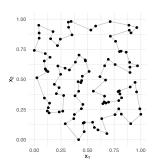
Figure 1: Schema of model building phase of the algorithm selection model with characterizing features. Loosely inspired by Figure 3 in [Ric76].

The Travailing Salesperson Problem

Traveling Salesperson Problem (TSP)

Given a set of n nodes V and pairwise distances $d(v_i, v_j)$ we aim for minimum length round-trip tour, i.e., a permutation $\pi = (\pi_1, \dots, \pi_n)$ that minimizes

$$TSP(\pi) = d(\pi_n, \pi_1) + \sum_{i=1}^{n-1} d(\pi_i, \pi_{i+1}).$$



Easy and Hard TSP Instances

Q: How do easy (hard) TSP instances for a heuristic, say 2-Opt, look like in feature space?

- If we know that certain feature values / ranges make an instance hard, we could try to construct instances with such feature values
- → this is very difficult in general [SHL10]
- Let EAs do the work[SHL10; Mer+12; Nal+13]: start with a random instance, perform minor perturbation and optimize the approximation ratio

$$\alpha_A(I) = \frac{A(I)}{OPT(I)}.$$

TSP Instance Features

It is reasonable to assume that (TSP) solver performance is strongly impacted by structural properties of TSP instances⁵ such as:

- · The number of nodes.
- · Existence of groups / clusters.
- · Summary statistics of pairwise distances.
- Number of weak / strong connected components of the k-Nearest Neighbor Graph (k-NNG).

• ...

Diversity in TSP Feature Space

Problem

Feature space range covered by evolved instances rather small in classical approaches, e.g. in [Mer+12].

Measuring Diversity [GNN16]

Let I_1, \ldots, I_{μ} be the elements of the population and $f(I_1), \ldots, f(I_k) \in [0, R]$ their feature values. Further assume that $f(I_1) \leq f(I_2) \leq \ldots \leq f(I_{\mu})$. Let I_i be such that $f(I_i) \neq f(I_1)$ and $f(I_i) \neq f(I_{\mu})$. Then we set the feature-based diversity contribution as

$$d(l_{i}, P) = (f(l_{i}) - f(l_{i-1})) \cdot (f(l_{i+1}) - f(l_{i}))$$

$$(f(l_{i}) - f(l_{i-1})) \quad (f(l_{i+1}) - f(l_{i}))$$

$$f(l_{i-1}) \quad f(l_{i}) \quad f(l_{i+1})$$

⁵Imagine a TSP instance where all nodes are aligned on a cycle. Easy for almost all solvers!

TSP Feature Diversity - Results

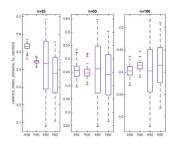


Figure 2: Distribution of feature centroid_mean_distance_to_centroid feature values of a population consisting of 100 different hard or easy TSP instances. e=easy, h=hard, a=classical, b=diversity.

More TSP Diversity: A Different Approach

Creative Mutation Operators [Bos+19]

No explicit diversity preservation / focus in the EA at all. Instead, modify the mutation operators such that they have a much higher impact on the points.

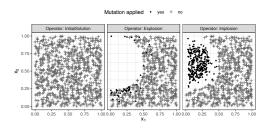


Figure 4: Explosion and implosion operators.

More TSP Diversity: A Different Approach

Problem

Evolved instances, though different in feature space, "look" very similar.⁶

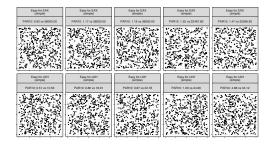


Figure 3: Each 5 instances that are easy for EAX and hard for LKH (top) and vice versa (bottom).

More TSP Diversity: A Different Approach (cont.)

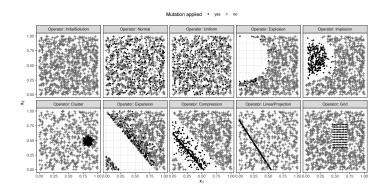


Figure 5: All operators proposed in [Bos+19].

⁶In fact they look more or less random uniform.

A Different Approach: Some Results

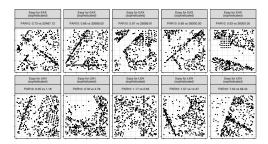


Figure 6: Each 5 instances that are easy for EAX and hard for LKH (top) and vice versa (bottom) evolved by using the new mutation operators.

EDO for Images

A Different Approach: Some Results

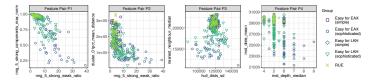
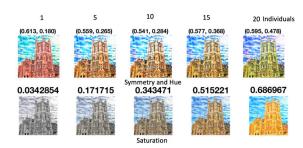


Figure 7: Evolved instances in different feature spaces spanned by each two features with classical operators (simple) and new operators (sophisticated).

EDO for Images: Key Idea

- Produce diverse image sets using evolutionary computation methods [AKN17].
- Use a $(\mu + \lambda)$ -EA_D for evolving image instances.
- Select the individuals based on their contribution to diversity of the image.



EDO for Images

- We use a $(\mu + \lambda)$ -EA_D for evolving image instances.
- Knowledge on how we can combine different image features to produce interesting image effects.
- Study how different combinations of image features correlate when images are evolved to maximize diversity.

Feature Diversity Measure

Measuring Diversity [GNN16]

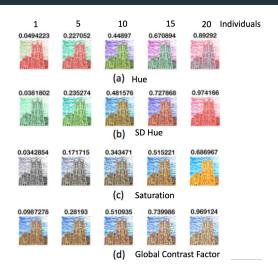
Let l_1, \ldots, l_μ be the elements of the population and $f(l_1), \ldots, f(l_k) \in [0, R]$ their feature values. Further assume that $f(l_1) \leq f(l_2) \leq \ldots \leq f(l_\mu)$. Let l_i be such that $f(l_i) \neq f(l_1)$ and $f(l_i) \neq f(l_\mu)$. Then we set the feature-based diversity contribution as

$$\frac{d(l_{i}, P) = (f(l_{i}) - f(l_{i-1})) \cdot (f(l_{i+1}) - f(l_{i}))}{(f(l_{i}) - f(l_{i-1})) \qquad (f(l_{i+1}) - f(l_{i}))}$$

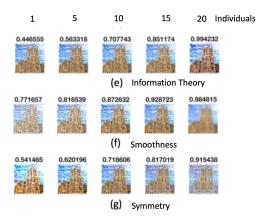
$$f(l_{i-1}) \qquad f(l_{i}) \qquad f(l_{i+1})$$

The ($\mu + \lambda$ -EA_D

Single-Dim. Feature Experiments



Single-Dim. Feature Experiments



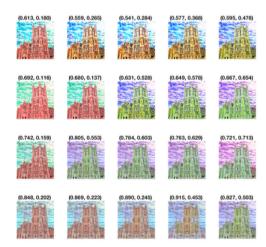
Multiple Features

- For 2 or more features, weightening of diversity contributions might not lead to good diversity.
- · Results depend on chosen weightening.

Questions

- · What is a good diversity measure?
- What is the diversity optimization goal?

Two-Dim. Feature Experiments

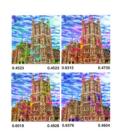


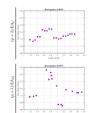
a) Symmetry and Hue 20 Individuals

Discrepancy-Based EDO

Discrepancy-Based EDO: Goal and Key Idea

- Design new approach of discrepancy-based EDO [Neu+18].
- Construct sets of solutions for evolved images and instances of the TSP.





Discrepancy-Based EDO: Example Runs

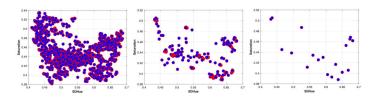


Figure 3: All feature vectors generated in 10 runs of $(\mu + \lambda)$ - EA_T with 1000 iterations each (left), one run with 1000 iterations (middle), the final population after 1000 iteration with discrepancy 0.22637 (right).

Discrepancy-Based EDO

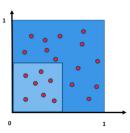
- New approach for discrepancy-based evolutionary diversity optimization.
- Investigate the use of the star discrepancy measure for diversity optimization for images.
- Introduce an adaptive random walk mutation operator based on random walks.
- · Compare to other approaches for images [AKN17].

Star Discrepancy

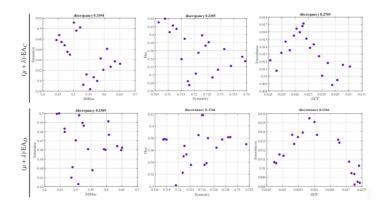
Given a set for points $X = \{s^1, \dots, s^n\} \subseteq S$ with $S = [0, 1]^d$. Let $, [a, b] := [a_1, b_1] \times \dots \times [a_d, b_d].$

Then, the star discrepancy is defined as

$$D(X, \mathcal{B}) := \sup\{ \text{Vol}([a, b]) - |X \cap [a, b]|/n \mid a \le b \in [0, 1]^d \}$$



Discrepancy-Based EDO for Images



Discrepancy-Based EDO for TSP

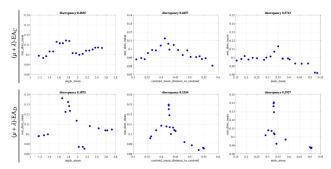


Figure 5: Feature vectors for final population of $(\mu + \lambda)$ -EA_C (top) and $(\mu + \lambda)$ -EA_D (bottom) for TSP based on two feature from left to right: (angle_mean, mst_dists_mean), (centroid_mean_distance_to_centroid, mst_dists_mean), (nnds_mean, mst_dists_mean)

Discrepancy-Based EDO for Images

		$(\mu + \lambda)$	$)$ - $EA_C(1)$			$(\mu + \lambda)$	$-EA_D$ (2)		$(\mu + \lambda)$ -EA _T (3)				
	min	mean	std	stat	min	mean	std	stat	min	mean	std	stat	
(f1, f2)	0.2014	0.3234	0.0595	2(-),3(-)	0.1272	0.2038	0.1157	1(+)		0.1530			
(f3, f4)				$2^{(-)},3^{(-)}$								1(+),2(+)	
(f5, f6)				$2^{(-)},3^{(-)}$						0.1800			
(f1, f2, f3)									0.2253	0.2814			
(f1, f4, f3)	0.2754	0.3395	0.0483	$2^{(-)},3^{(-)}$	0.2100	0.3118	0.1309	1(+)	0.2224	0.2600	0.0123	1(+)	
(f5, f4, f2)	0.4775	0.6488	0.0841	$2^{(-)}3^{(-)}$	0.2021	0.3007	0.1467	1(+)	0.1983	0.2229	0.0125	1(+)	

Discrepancy-Based EDO for TSP

		$(\mu + .$	λ)- EA_C			$(\mu + .$	λ)- EA_D			$(\mu +$	λ)- EA_T	
	min	mean	std	stat	min	mean	std	stat	min	mean	std	stat
(f1,f4)				2(-),3(-)								1(+),2(+)
(f2, f4)				2(-),3(-)				1(+),3(-)	0.2816	0.3363	0.0435	1(+),2(+)
(f3, f4)				$2^{(-)},3^{(-)}$		0.4422	0.0534	1(+)	0.3831	0.4113	0.0175	1(+)
(f1, f3, f4)						0.4585	0.0183	1(+)	0.4372	0.4604	0.0422	1(+)
(f2, f3, f4)						0.4563	0.0215	1(+)	0.3730	0.4514	0.0327	1(+)
(f1, f2, f3)	0.7593	0.7836	0.0111	2(-),3(-)	0.3900	0.4095	0.0160	1(+)	0.3547	0.3988	0.0217	1(+)

Table 2: Statistics of discrepancy values for TSP. ft, f2, f3, f4 denote the feature angle_mean, centroid_mean_dist_centroid, nnds_mean, mst_dists_mean respectively.

Multi-Objective Indicator-Based EDO

Multi-Objective Performance Indicators

Popular indicators in the field are given an approximation set *S* and a reference set *R* / reference point *r*:

Dominated Hypervolumne (HYP):

$$\mathsf{HYP}(S,r) := \mathsf{VOL}\left(\bigcup_{\mathsf{S} \in S} [r_1, s_1] \times \ldots \times [r_d, s_d]\right)$$

· Inverted Generational Distance (IGD):

$$IGD(S,R) := \frac{1}{|R|} \sum_{r \in R} \min_{s \in S} d(r,s)$$

• Additive ε -Indicator (EPS):

$$EPS(S,R) := \max_{r \in R} \min_{s \in S} \max_{1 \le i \le d} (s_i - r_i)$$

Indicator-Based MOO

- · Let I be a search point
 - Let $f: \mathcal{X} \to \mathbb{R}^d$ be a function that assigns to each search point $l \in \mathcal{X}$ an objective vector.
 - Let $q: \mathcal{X} \to \mathbb{R}$ be a function that measures constraint violations.
 - We require $q(I) \ge \alpha$ for all "good" solutions.
- A multi-objective (MO) indicator $D: 2^{\mathcal{X}} \to \mathbb{R}$ measures the quality of a given set of search points.

Goal

Compute set $P = \{I_1, \dots, I_{\mu}\}$ of μ solutions maximizing (minimizing) D among all sets of μ solutions under the condition that $q(I) \ge \alpha$ holds for all $I \in P$, where α is a given quality threshold.

Idea: How to Use MO-Indicators for EDO?

- Diversity optimization aims to compute a diverse set of solutions for a given single-objective problem.
- Multi-objective indicators guide the search towards a diverse set of Pareto-optimal solutions.

Use of multi-objective indicators [Neu+19]:

- Transform feature vectors of search points to make them (artificially) incomparable.
- Apply multi-objective indicators after transformation has occurred.

Generic Algorithm

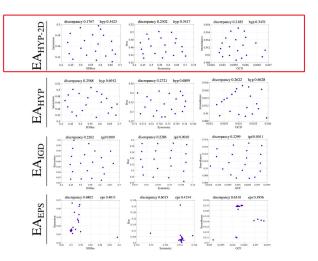
Algorithm 3: Diversity maximizing ($\mu + \lambda$) EA [Neu+19]

- 1 Initialize the population P with μ instances of quality at least α ;
- 2 Let $C \subseteq P$ where $|C| = \lambda$;
- ³ For each $l \in C$, produce an offspring l' of l by mutation. If $q(l') \ge \alpha$, add l' to p.
- 4 While $|P| > \mu$, remove the individual with the smallest loss to the diversity indicators D_i
- 5 Repeat steps 2 to 4 until a termination criterion is reached;

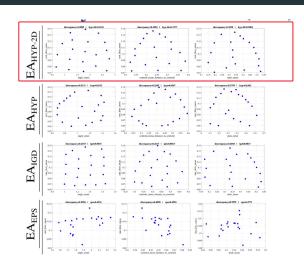
MO-Indicator-Based EDO for Images

			E	AHYP-2D (1)			A _{HYP} (2)			EA _{IGD} (3)			EA _{EPS} (4)			EA _{DIS} (5)
		mean	st	stat	mean		stat	mean		stat	mean		stat	mean		stat
5	f_1, f_2	0.347	0.004	4(+),5(+)												1(-),2(-),3(-)
ĝ,	f_3, f_4	0.344	0.004	2(+),4(+),5(+)	0.268	0.014	1(-),3(-),4(+),5(+)	0.339	0.004	2(+),4(+),5(+)	0.221	0.015	1(-),2(-),3(-)	0.105	0.025	1(-),2(-),3(-)
- 9	fr. fe	0.350	0.007	2(+),3(+),4(+),5(+)	0.342	0.004							1(-),2(-),3(-)	0.134	0.016	1(-),2(-),3(-)
	f1.f2	0.525	0.012	3(+),4(+),5(+)	0.693	0.013	3(+),4(+),5(+)	0.374	0.006							1(-),2(-)
Ξ	fs.fa	0.500	0.007	3(+),4(+),5(+)	0.681	0.010										1(-),2(-),3(-)
-	$f_{R_{\bullet}}f_{R}$	0.518	0.012	2(-),4(+),5(+)												1(-),2(-)
	$f_1.f_2$	0.001	0.335	2(+),4(+),5(+)												1(-),3(-),4(-)
븅	f2.f4	0.001	0.339	2(+),4(+),5(+)												1(-),2(-),3(-),4(-
_	f_5, f_6	0.002	0.332	2(+),5(+)									2(+),3(-)			1(-),2(+),3(-)
	$f_1.f_2$	0.190	0.198	2(+),4(+),5(+)												1(-),3(-),4(-)
d.	f_3,f_4	0.198	0.221	2(+),4(+),5(+)	0.569	0.016	1(-),3(-)							0.615	0.069	1(-),3(-),4(-)
_	for for	0.125	0.220	2(+) 4(+) 5(+)							0.397	0.110	1(-),2(+),3(-)	0.587	0.063	1(-),3(-)
	$f_1.f_2$	0.171	0.018	2(+),4(+),5(+)									1(-),2(-),3(-),5(-)			
Sic	fa.fa	0.234	0.031	4(+)	0.273	0.041	3(-),4(+),5(-)	0.198	0.017	2(+),4(+)	0.606	0.054	1(-),2(-),3(-),5(-)	0.228	0.059	2(+),4(+)
-	fs.fs	0.221	0.026	4(+)	0.263	0.070	3(-),4(+),5(-)	0.205	0.055	2(+),4(+)	0.633	0.158	1(-),2(-),3(-),5(-)	0.203	0.054	2(+),4(+)

MO-Indicator-Based EDO for Images



MO-Indicator-Based EDO for TSP



MO-Indicator-Based EDO for TSP

			EAH	YP-2D (1)			EA _{HYP} (2)		EA	IGD (3)		3	EA _{EPS} (4)			EA _{DIS} (5)
		mean		stat	mean		stat	mean		stat	mean	st	stat	mean		stat
g	f_1, f_4	0.338	2E-3	2(+),4(+),5(+)	0.309	4E-3	1(-),4(+)	0.331	3E-3	4(+),5(+)	0.190	1E-3	1(-),2(-),3(-)	0.256	1E-2	1(-),3(-)
ο.	fo.fa	0.317	3E-3	2(+),4(+),5(+)	0.303	5E-3	1(-),3(-),4(+)	0.316	3E-3	2(+),4(+),5(+)	0.178	1E-7	$1^{(-)}.2^{(-)}.3^{(-)}$	0.252	1E-2	$1^{(-)},3^{(-)}$
Ě	f_3, f_4	0.303	2E-2	$2^{(+)},4^{(+)},5^{(+)}$			1(-),3(-),4(+),5(+)	0.304	2E-2	$2^{(+)},4^{(+)},5^{(+)}$	0.190		1(-),2(-),3(-)			1(-),2(-),3(-)
	$f_1.f_4$	0.645	5E-3	4(+),5(+)			4(+),5(+)	0.639	6E-3	4(+),5(+)	0.424		1(-),2(-),3(-)			1(-),2(-),3(-)
Ξ	f_2, f_4	0.609	7E-3	2(-),4(+),5(+)	0.632	1E-2	1(+),4(+),5(+)	0.621	6E-3	4(+),5(+)	0.398	1E-6	$1^{(-)}, 2^{(-)}, 3^{(-)}$	0.505	2E-2	$1^{(-)},2^{(-)},3^{(-)}$
ж	f_3, f_4	0.584	3E-2	2(-),4(+)			1(+),3(+),4(+),5(+)			$2^{(-)},4^{(+)},5^{(+)}$	0.410		1(-),2(-),3(-)			2(-),3(-)
_	$f_1.f_4$	0.001	2E-5	4(+),5(+)			3(-),4(+)						1(-),2(-),3(-)			1(-),3(-)
5	f_2, f_4	0.001	3E-5	2(+),4(+),5(+)			1(-),3(-),4(+)						1(-),2(-),3(-)			1(-),3(-)
	f_3, f_4	0.002	3E-4	4(+),5(+)	0.002	6E-5	$3^{(-)},4^{(+)},5^{(+)}$	0.002	3E-4	$2^{(+)},4^{(+)},5^{(+)}$	0.003	3E-5	$1^{(-)}, 2^{(-)}, 3^{(-)}$	0.003	3E-4	1(-),2(-),3(-)
	$f_1.f_4$	0.196	2E-2	2(+),4(+),5(+) 2(+),4(+),5(+)	0.249		1(-),3(-),4(+)			2(+),4(+),5(+)			1(-),2(-),3(-)			1(-),3(-)
Ä	fa.fa	0.226	8E-3	2(+),4(+),5(+)	0.256	2E-2	1(-),3(-),4(+),5(+)	0.228	1E-2	2(+),4(+),5(+)	0.499	2E-16	1(-),2(-),3(-)	0.360	5E-2	1(-),2(-),3(-)
144	f_3, f_4	0.260	4E-2	4(+),5(+)	0.278	2E-2	4(+),5(+)	0.265	4E-2	4(+),5(+)	0.477	3E-3	1(-),2(-),3(-)	0.368	5E-2	1(-),2(-),3(-)
	$f_1.f_4$	0.222	2E-2	2(+),4(+),5(+)	0.353	2E-2	1(-),3(-),4(+) 1(-),4(+),5(+)	0.249	2E-2	2(+),4(+)			1(-),2(-),3(-),5(-)			
55	fo.fa	0.230	2E-2	2(+),4(+),5(+)	0.274	2E-2	1(-),4(+),5(+)	0.252	1E-3	4(+),5(+)	0.609	1E-16	1(-),2(-),3(-),5(-)	0.336	4E-2	1(-),2(-),3(-),4(+)
-		0.410	60.0	4(+)	0.416	20.2	4(+)	0.401	70.2	4(+) = (+)	0.710	6E 2	1(-1) a(-1) a(-1) e(-1)	0.440	or a	$2(-1) \cdot 4(+)$

Questions

- What type of features are good to characterize problem instances of a given problem (e.g. TSP) for a particular algorithm.
- · What is a good diversity measure?
- What is the runtime behavior of EAs maximizing search-space/feature diversity?
- How do we compute diverse sets of high quality solutions for important combinatorial optimization problems?
- How do we adjust state of the art solver to compute diverse sets of solutions (instead of a single one)

Results

- · We proposed a new approach for EDO.
- We demonstrated that multi-objective performance indicators can be used to achieve a good diversity of sets of solutions according to a given set of features.
- The advantages of our approaches are (i) their simplicity and (ii) the quality of diversity achieved as measured by the respective indicators.
- We have shown that the best performing approaches use HYP or IGD as indicators, and often even outperform the discrepancy-based approach.

Diversity Optimization for TSP Tours

TSP Tour Diversity

Motivation

- · We already investigated feature-diversity of TSP instances.
- Now, we study the TSP in the context of diversity optimization by focusing on the diversity of tours themselves, not their qualities [Do+20].

Problem Formulation

We are given a (complete) edge-weighted graph G=(V,E,c) with cost function $c:E\to\mathbb{R}^+$. Let n=|V|, m=|E|=n(n-1)/2. Given parameters $\mu\geq 2$ and $\alpha>0$ find a population $P,|P|=\mu$, such that

$$c(T) \le (1 + \alpha)\mathsf{OPT} \ \forall T \in P$$

and P is maximally diverse with respect to some diversity measure D.

Maximizing Edge Diversity

Intuitively: Each edge should be used in as few tours as possible (in at most one tour if possible).

· Edge Diversity (ED): Equalize frequencies of edges.

$$ED(P) = \sum_{T_1 \in P} \sum_{T_2 \in P} |E(T_1) \setminus E(T_2)| = \mu(\mu - 1)n + \sum_i n_i - \sum_i n_i^2.$$

 Pairwise Distances (PD): Equalizing pairwise edge distances between tours.

Theorem

For every pair of integers $\mu \geq 1$ and $n \geq 3$, given a complete graph G=(V,E) where |V|=n, there is a μ -size population P of tours such that

$$\max_{e \in F} \{ n(e, P) \} - \min_{e \in F} \{ n(e, P) \} \le 1.$$

Diversity maximizing (μ + 1) EA

Algorithm 4: Diversity maximizing (μ + 1) EA [Do+20]

- 1 Initialize the population *P* with μ TSP tours such that $c(T) \leq (1 + \alpha) \cdot OPT$ for all $T \in P$;
- ² Choose $T \in P$ uniformly at random and produce an offspring T' of T by mutation;
- 3 If $c(T') \le (1 + \alpha) \cdot OPT$, add T' to P;
- 4 If $|P| = \mu + 1$, remove exactly one individual T, where $T = \arg\min_{l \in P} D(P \setminus \{l\})$, from P;
- 5 Repeat steps 2 to 4 until a termination criterion is reached;

Unconstrained Case

All tours meet the quality criterion ($\alpha = \infty$).

Table 1: Comparison in terms of diversity (gtype), the number of iterations (#iter) and results of statistical testing (stat) between variants with ED approach in unconstrained cases. The Kruskal-Wallis test and the Bonferroni correction method [4] are used on #iter. X** means the measure is larger than the one for variant X, X** means smaller and X** means no difference.

n	μ			2-OPT(1)				3-OPT(2)						4-OPT(3)						
		gtype	std	# iter	std	stat	gtype	std	# iter	std	stat	gtype	std	# iter	std	stat				
	3	100.00%	0.00	104.50	59.19	2+, 3+	100.00%	0.00	68.60	35.67	1-, 3*	100.00%	0.00	54.37	24.28	1-, 2*				
50	10	100.00%	0.00	1635.80	485.88	2*, 3*	100.00%	0.00	1808.43	484.96	1*, 3*	100.00%	0.00	1736.60	545.36	1", 2"				
50	20	100.00%	0.00	25383.03	8594.81	$2^{-}, 3^{-}$	99.97%	0.02	49881.60	471.00	1+, 3*	99.93%	0.02	50000.00	0.00	1+, 2				
50	50	99.99%	0.00	125000.00	0.00	2*, 3*	99.95%	0.00	125000.00	0.00	1*, 3*	99.93%	0.01	125000.00	0.00	1, 2				
100	3	100.00%	0.00	170.83	98.50	2*, 3+	100.00%	0.00	137.53	69.76	1*, 3*	100.00%	0.00	102.13	58.69	1-, 2				
	10	100.00%	0.00	1901.73	632.60	2*, 3+	100.00%	0.00	1598.80	386.85	1*, 3+	100.00%	0.00	1305.63	343.38	1-, 2				
100	20	100.00%	0.00	8422.40	1742.96	2-, 3*	100.00%	0.00	9902.63	1984.39	1+, 3*	100.00%	0.00	9414.27	2018.82	1", 2"				
	50	99.95%	0.00	500000.00	0.00	2*, 3*	99.86%	0.00	500000.00	0.00	1*, 3*	99.82%	0.01	500000.00	0.00	1, 2				
	3	100.00%	0.00	401.03	213.80	2+, 3+	100.00%	0.00	254.80	111.06	1-, 3*	100.00%	0.00	197.60	78.85	1-, 2				
200	10	100.00%	0.00	3350.47	958.53	2+, 3+	100.00%	0.00	2261.10	570.16	1-,3*	100.00%	0.00	1888.87	510.91	1-, 2				
200	20	100.00%	0.00	10189.73	2233.72	2+, 3+	100.00%	0.00	8959.07	2242.66	1-,3*	100.00%	0.00	7901.73	1286.07	1-, 2				
	50	100.00%	0.00	76856.37	14056.12	2-,3-	100.00%	0.00	102039.53	17118.06	1+,3-	100.00%	0.00	132837.73	25315.99	1+, 2				
	3	100.00%	0.00	974.33	509.02	2+,3+	100.00%	0.00	631.20	267.24	1-,3*	100.00%	0.00	560.77	332.16	1-, 2				
500	10	100.00%	0.00	6608.33	2298.31	2*, 3+	100.00%	0.00	5281.23	1729.61	1*,3+	100.00%	0.00	3537.07	965.71	1-, 2				
500	20	100.00%	0.00	20888.53	5343.92	2+, 3+	100.00%	0.00	15007.67	3265.35	1-,3+	100.00%	0.00	11821.93	3388.06	1-, 2				
	50	100.00%	0.00	93280.70	17697.95	2+, 3+	100.00%	0.00	67817.73	13010.55	1-, 3*	100.00%	0.00	64425.13	9267.66	1-,2				

Constrained Case

Table 3: Comparison in terms of diversity (gtype) and pairwise edge distances ranges (c) among all variants of the EA on TSPIbi instances. Better values with statistical significance (based on Wilcoxon rank sum tests with 95% confidence threshold) between ED and PD are bold-faced.

				E	D		PD							
μ	α	2-0	OPT	3-OPT		4-0	4-OPT		2-OPT		3-OPT		OPT	
		gtype	s	gtype	ς	gtype	ç	gtype	s	gtype	ç	gtype	s	
3	0.05	34.27%	68.37%	36.23%	67.78%	28.95%	74.05%	32.07%	69.54%	35.95%	66.14%	29.78%	71.96	
	0.2	70.78%	31.83%	67.93%	35.03%	63.68%	40.46%	71.11%	30.20%	65.95%	35.75%	63.12%	38.56	
	0.5	93.83%	8.43%	90.85%	11.05%	90.78%	11.37%	93.62%	7.12%	90.26%	11.18%	90.37%	10.59	
	1	99.89%	0.13%	99.83%	0.26%	99.80%	0.33%	99.80%	0.33%	99.74%	0.65%	99.76%	0.525	
10	0.05	31.82%	79.67%	33.64%	78.43%	27.79%	82.88%	29.37%	78.24%	31.60%	75.95%	27.65%	79.61	
	0.2	63.04%	70.39%	60.60%	67.12%	57.78%	63.40%	60.99%	44.90%	59.23%	47.39%	55.99%	51.31	
	0.5	83.14%	30.85%	81.34%	36.67%	81.29%	37.58%	82.00%	20.33%	80.12%	23.01%	79.87%	23.99	
	1	95.06%	10.26%	94.14%	11.76%	94.19%	11.63%	94.57%	7.58%	93.30%	8.50%	93.16%	8.50	
20	0.05	32.52%	95.23%	32.86%	91.37%	27.89%	90.85%	29.20%	82.42%	31.23%	79.08%	26.45%	83.53	
	0.2	62.32%	92.09%	59.98%	91.57%	57.46%	91.70%	59.30%	49.15%	57.84%	51.37%	54.53%	55.29	
	0.5	80.95%	59.02%	79.24%	63.27%	79.60%	64.84%	79.03%	25.29%	77.69%	27.84%	77.32%	29.08	
	1	92.17%	19.87%	91.41%	22.42%	91.58%	21.31%	90.97%	11.83%	90.28%	12.42%	90.24%	12.75	
50	0.05	32.66%	100.00%	33.23%	100.00%	28.01%	100.00%	29.81%	85.88%	31.75%	82.48%	26.93%	85.95	
	0.2	63.26%	99.48%	61.52%	97.78%	58.92%	96.99%	59.68%	53.59%	58.36%	57.12%	55.04%	59.80	
	0.5	80.74%	92.35%	79.56%	90.59%	79.80%	88.76%	79.15%	29.67%	78.12%	32.29%	77.94%	33.66	
	1	91.65%	48.95%	91.25%	52.68%	91.33%	48.37%	90,60%	15.69%	90.42%	15.75%	90.42%	16.67	

Outlook and Conclusions

Exemplary Populations

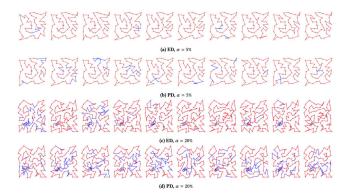


Figure 8: Visualized tour populations from resulted populations in eil51 cases with $\mu=$ 10 and 2-OPT as mutation operator. Red edges are shared by at least two tours in the population, and blue ones are unique to the tour.

Outlook: runtime complexity

Theory: Runtime Results ®

So far pretty sparse list of results:

- [GN14] study the maximization of population diversity on OneMax and LeadingOnes, [DGN16] for OneMinMax.
- [Do+21] studies EDO on permutation problem TSP and QAP, [BN21] on MSTs. More results on well-known combinatorial optimization problems desirable.
- One of the major challenges: given a diversity measure, how does a maximally diverse population of size μ look like?
- Call for participation ©

References i

- [UT11] Tamara Ulrich and Lothar Thiele. "Maximizing population diversity in single-objective optimization". In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Proceedings, Dublin, Ireland, July 12-16, 2011. Ed. by Natalio Krasnogor and Pier Luca Lanzi, ACM, 2011, pp. 641–648. Doi: 10.1145/2001576.2001665.
- [Ulr12] Tamara Ulrich. "Exploring structural diversity in evolutionary algorithms". PhD thesis. The address of the publisher: The school of the thesis, Oct. 2012.
- [LS11] Joel Lehman and Kenneth O. Stanley. "Novelty Search and the Problem with Objectives". In: *Genetic Programming Theory and Practice IX*. Ed. by Rick Riolo, Ekaterina Vladislavleva, and Jason H. Moore. New York, NY: Springer New York, 2011, pp. 37–56. ISBN: 978-1-4614-1770-5. DOI: 10.1007/978-1-4614-1770-5_3. URL: https://doi.org/10.1007/978-1-4614-1770-5_3.
- [DLC19] Stephane Doncieux, Alban Laflaquière, and Alexandre Coninx. "Novelty Search: A Theoretical Perspective". In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO '19. Prague, Czech Republic: Association for Computing Machinery, 2019, pp. 99–106. ISBN: 9781450361118. DOI: 10.1145/3321707.3321752. URL: https://doi.org/10.1145/3321707.3321752.
- [PSS16] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. "Quality Diversity: A New Frontier for Evolutionary Computation". In: Frontiers in Robotics and AI 3 (2016). ISSN: 2296-9144. DOI: 10.3389/frobt.2016.00040. URL: https://www.frontiersin.org/article/10.3389/frobt.2016.00040.

References iii

- [Mer+12] Olaf Mersmann et al. "Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness". In: Proceedings of the 6th International Conference on Learning and Intelligent Optimization (LION 2012). Ed. by Y Hamadi and M Schoenauer. Vol. 7219. LNCS. Springer, 2012, pp. 115–129.
- [Nal+13] Samadhi Nallaperuma et al. "A Feature-Based Comparison of Local Search and the Christofides Algorithm for the travelling salesperson problem". In: Proceedings of the 12th Workshop on Foundations of Genetic Algorithms XII. FOGA XII '13. New York, NY, USA: ACM, 2013, p. 147. ISBN: 978-1-4503-1990-4. DOI: 10.1145/2460239.2460253. URL: http://dl.acm.org/citation.cfm?doid=2460239.2460253.
- [GNN16] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. "Feature-Based Diversity Optimization for Problem Instance Classification". In: Parallel Problem Solving from Nature PPSN XIV 14th International Conference, Edinburgh, UK, September 17-21, 2016, Proceedings. Ed. by Julia Handl et al. Vol. 9921. Lecture Notes in Computer Science. Springer, 2016, pp. 869–879. DOI: 10.1007/978-3-319-45823-6\s\81. URL: https://doi.org/10.1007/978-3-319-45823-6%5C_81.

References ii

- [NNN21] Adel Nikfarjam, Aneta Neumann, and Frank Neumann. On the Use of Quality Diversity
 Algorithms for The Traveling Thief Problem. 2021. arXiv: 2112.08627 [cs.NE].
- [BN22] Jakob Bossek and Frank Neumann. Exploring the Feature Space of TSP Instances Using Quality Diversity. 2022. arXiv: 2202.02077 [cs.NE].
- [SP94] Andrew R. Solow and Stephen Polasky. "Measuring biological diversity". English (US). In: Environmental and Ecological Statistics 1.2 (June 1994), pp. 95–103. ISSN: 1352-8505. DOI: 10.1007/BF02426650.
- [Ric76] John R Rice. "The Algorithm Selection Problem". In: Advances in Computers. Ed. by Morris Rubinoff and Marshall C Yovits. Vol. 15. Advances in Computers. Elsevier, 1976, pp. 65–118. Doi: 10.1016/S0065-2458(08)60520-3. uRL: http: //www.sciencedirect.com/science/article/pii/S0065245808605203.
- [SHL10] Kate Smith-Miles, Jano van Hemert, and Xin Yu Lim. "Understanding TSP Difficulty by Learning from Evolved Instances". In: Proceedings of the 4th International Conference on Learning and Intelligent Optimization (LION 2012). Ed. by Christian Blum and Roberto Battiti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 266–280. ISBN: 978-3-642-13800-3. DOI: 10.1007/978-3-642-13800-3. 29.

References iv

- [Bos+19] Jakob Bossek et al. "Evolving diverse TSP instances by means of novel and creative mutation operators". In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, FOGA 2019, Potsdam, Germany, August 27-29, 2019. Ed. by Tobias Friedrich, Carola Doerr, and Dirk V. Arnold. ACM, 2019, pp. 58–71. DOI: 10.1145/3299904.3340307. URL: https://doi.org/10.1145/3299904.3340307.
- AKN17] Brad Alexander, James Kortman, and Aneta Neumann. "Evolution of Artistic Image Variants through Feature Based Diversity Optimisation". In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO '17. Berlin, Germany: Association for Computing Machinery, 2017, pp. 171–178. ISBN: 9781450349208. DOI: 10.1145/3071178.3071342. URL: https://doi.org/10.1145/3071178.3071342.
- [Neu+18] Aneta Neumann et al. "Discrepancy-Based Evolutionary Diversity Optimization". In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO '18. Kyoto, Japan: Association for Computing Machinery, 2018, pp. 991–998. ISBN: 9781450356183. Doi: 10.1145/3205455.3205532. URL: https://doi.org/10.1145/3205455.3205532.

References v

- [Neu+19] Aneta Neumann et al. "Evolutionary Diversity Optimization Using Multi-Objective Indicators". In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO '19. Prague, Czech Republic: Association for Computing Machinery, 2019, pp. 837–845. ISBN: 9781450361118. DOI: 10.1145/3321707.3321796. URL: https://doi.org/10.1145/3321707.3321796.
- [Do+20] Anh Viet Do et al. "Evolving Diverse Sets of Tours for the Travelling Salesperson Problem". In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference. GECCO '20. Cancún, Mexico: Association for Computing Machinery, 2020, pp. 681–689. ISBN: 9781450371285. DOI: 10.1145/3377930.3389844. URL: https://doi.org/10.1145/3377930.3389844.
- [GN14] Wanru Gao and Frank Neumann. "Runtime Analysis for Maximizing Population Diversity in Single-Objective Optimization". In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. GECCO '14. Vancouver, BC, Canada: Association for Computing Machinery, 2014, pp. 777–784. ISBN: 9781450326629. DOI: 10.1145/2576768.2598251. URL: https://doi.org/10.1145/2576768.2598251.

References vi

[DGN16] Benjamin Doerr, Wanru Gao, and Frank Neumann. "Runtime Analysis of Evolutionary Diversity Maximization for OneMinMax". In: Proceedings of the Genetic and Evolutionary Computation Conference 2016. GECCO '16. Denver, Colorado, USA:
Association for Computing Machinery, 2016, pp. 557–564. ISBN: 9781450342063. DOI: 10.1145/2908812.2908827. URL: https://doi.org/10.1145/2908812.2908827.

[Do+21] Anh Viet Do et al. "Analysis of Evolutionary Diversity Optimisation for Permutation Problems". In: Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY, USA: Association for Computing Machinery, 2021, pp. 574–582. ISBN: 9781450383509. URL: https://doi.org/10.1145/3449639.3459313.

[BN21] Jakob Bossek and Frank Neumann. "Evolutionary Diversity Optimization and the Minimum Spanning Tree Problem". In: Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY, USA: Association for Computing Machinery, 2021, pp. 198–206. ISBN: 9781450383509. URL: https://doi.org/10.1145/3449639.3459363.