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ABSTRACT

Sequential model-based optimization (SMBO) approaches are algo-
rithms for solving problems that require computationally or other-
wise expensive function evaluations. The key design principle of
SMBO is a substitution of the true objective function by a surrogate,
which is used to propose the point(s) to be evaluated next.

SMBO algorithms are intrinsically modular, leaving the user
with many important design choices. Significant research efforts go
into understanding which settings perform best for which type of
problems. Most works, however, focus on the choice of the model,
the acquisition function, and the strategy used to optimize the latter.
The choice of the initial sampling strategy, however, receives much
less attention. Not surprisingly, quite diverging recommendations
can be found in the literature.

We analyze in this work how the size and the distribution of the
initial sample influences the overall quality of the efficient global op-
timization (EGO) algorithm, a well-known SMBO approach. While,
overall, small initial budgets using Halton sampling seem preferable,
we also observe that the performance landscape is rather unstruc-
tured. We furthermore identify several situations in which EGO
performs unfavorably against random sampling. Both observations
indicate that an adaptive SMBO design could be beneficial, making
SMBO an interesting test-bed for automated algorithm design.

CCS CONCEPTS

« Computing methodologies — Continuous space search.
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1 INTRODUCTION

Sequential Model-Based Optimization (SMBO) algorithms are tech-
niques for the optimization of problems for which the evalua-
tion of solution candidates is resource-intensive, such as prob-
lems requiring real physical experiments or problems that require
computationally-expensive simulations. The latter are particularly
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present in almost any application of Artificial Intelligence, most no-
tably in terms of parameter tuning problems — a problem that is also
omnipresent in Evolutionary Computation [37]. SMBO-based tech-
niques are among the most successfully applied hyper-parameter
tuning methods [1, 18, 28, 35], so that research on this family of it-
erative optimization heuristics has gained significant traction in the
last decade. SMBO forms today an integral part of the state-of-the-
art heuristic solvers. Its probably best-known representatives are
Bayesian Optimization (see surveys by [40, 46, 49]) and, in particular,
Efficient Global Optimization (EGO, [30]).

The generic SMBO method works as follows. An initial design
of points is sampled and evaluated with the true objective function.
The eponymous sequential part iteratively (1) builds a surrogate
of the true objective function (on basis of the already evaluated
samples), (2) proposes new samples by optimizing a so-called infill-
criterion (which is sometimes referred to as acquisition function),
(3) evaluates these additional samples, and (4) integrates these sam-
ples, together with their quality indicators (“function values”, “fit-
ness”) into the memory. Each of these steps offers a great variety of
design choices, which all may affect the performance of the SMBO
procedure. Which surrogate model should be used? Which of the
countless infill criteria to use? What method should be used to
create the initial sample and what proportion of the overall budget
should be spent on the initial design? While a large body of works
addresses the first two questions (see surveys mentioned above),
the latter two questions are treated rather poorly. In this work we
aim to shed light on the relevance of a suitably chosen initial sam-
pling strategy. More precisely, we study how the size of the initial
design and the strategy used to generate it affects the performance
of SMBO. As a well-established benchmark environment offering
a great variety of different numerical optimization problems, we
chose the 24 noiseless BBOB functions (in different dimensions) as
test-bed for our investigation.

Our setup comprises of varying the initial design strategy (clas-
sical uniform and Latin-Hypercube-Sampling (LHS) as the most
frequently used methods and quasi-random Halton and Sobol’ se-
quences), the total budget, and the fraction of this total budget that
is used to build the initial sample. We study a total of 720 problems,
which are evaluated against 40 different initial design strategies.

Our general observation is that SMBO performance tends to
decrease with increasing initial design ratio, which is in line with
the general expectation that adaptive search should outperform
non-adaptive sampling. This may justify extreme settings such as
the singleton initial design used in the SMAC parameter tuning
framework [28]. As always in simulation-based optimization, we are
confronted with the important trade-off between the exploitation
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of already acquired knowledge (through adaptive sampling) and
the reduction of uncertainty in regions of the search space that
are currently not well covered with already evaluated samples.
Sampling in the latter regions of high uncertainty — commonly
referred to as exploration — can help to identify other promising
regions of the search space. In our experiments, we observe indeed
that small initial designs are not always preferable. In fact, we even
identify cases in which pure (quasi-)random sampling outperforms
any of the tested SMBO-based techniques.

We use our huge database also to investigate advantages of long
runs vs. restarted ones. That is, we address the question whether
one should use the full budget for one long run, or whether two
shorter runs of smaller budget are preferable. We identify several
cases in which restarts seem preferable, giving another indication
that an adaptive design of SMBO techniques could be preferable.

The evaluation and analysis of the dataset (which comprises
more than 500 000 experiments) has been particularly challenging,
as no clear pattern between the performance of the different designs
and the parameters of the problem (such as its dimension, its high-
level features, or even its function ID) were observable. Our data
suggests that machine-trained algorithm configuration techniques
should be able to outperform state-of-the-art SMBO designs by
large margins. The appropriateness of the BBOB dataset for finding
generalizable patterns has been shown in [4, 33].

Paper Organization. This work is structured as follows. Below,
we continue with an overview of related work and give information
about the availability of our data. Section 2 details the SMBO ap-
proach. In Section 3 we describe our experimental setup including
considered benchmark problems, parameter choices and perfor-
mance measures. Results are presented in Sections 4 to 6. We con-
clude with final remarks and visions for incorporating the acquired
knowledge into improved SMBO approaches.

Related Work. For surveys on Bayesian optimization and, more
generally, SMBO approaches we refer the interested reader to the
already mentioned surveys [40, 46, 49]. Our work builds on EGO,
originally suggested by Jones, Schonlau, and Welch [30]. EGO is
characterized by using a flexible Kriging, i.e., a Gaussian process
surrogate model which offers a natural uncertainty estimate and
the widely used quasi-standard expected improvement (EI) infill
criterion which balances exploitation of the model and exploration
of uncertain regions of the model [29].

Our key interest is an analysis of the influence of the initial de-
sign’s size and distribution. We assess four different distributions:
uniform sampling, LHS, Halton points, and Sobol’ sequences. For
each of these designs we test ten different initial sample sizes. Rec-
ommendations on which initial design should be favored vary quite
significantly within the community, see [2, 41] for a discussion. In
terms of design size, SMAC [28] makes an extreme choice in that it
uses only one randomly sampled initial design point, whereas other
commonly found SMBO implementations typically operate with
an initial design of size 10 - d [30, 41], where d denotes the search
space dimension (i.e., the optimization problem can be modeled as
afunction f : S C R — R). In terms of design distribution, LHS
and uniform sampling are routinely used in SMBO applications,
while quasi-random designs, like Halton and Sobol’ designs, are less
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commonly found - despite several indications that their even distri-
bution may be beneficial for maximizing the initial exploration [48].

We next summarize the main works which explicitly address the
question how to chose the initial design.

Bartz-Beielstein and Preuss study in [2] suitable initial designs
for SPOT [1], an SMBO algorithm specifically designed to perform
well on parameter tuning challenges. From experiments on hyper-
parameter tuning of evolutionary computation techniques, they
conclude that LHS sampling is, in general, to be preferred over uni-
form sampling. They thereby disagree with statements previously
made in [48], which argues that LHS designs do not gain much
over uniform sampling, and that quasi-random sampling strategies
should be used instead. The recommendation in [48] is, however,
to be understood in terms of general design of experiments setting,
and not specifically addressing SMBO initialization.

Brockhoff et al. [11] studied the difference between random
sampling and LHS designs for Matlab’s MATSuMoTo model-based
optimizer [42]. In contrast to our work, they fix the total budget of
function evaluations to n = 50 - d (whereas we use n = 2%, ...,2%)
and compared only four initial designs: LHS with 2 - (d + 1) - k for
k = 1,2,10 and random sampling with 4 - (d + 1) points. Results are
compared against SMAC [28] and pure random sampling. Their ex-
periments are also across all 24 BBOB functions ind = 2, 3, 5, 10, 20
dimensions (we study d = 2, 3, 4, 5, 10). Their performance measure
is a fixed-target measure, more precisely they study the expected
running time (ERT) for target values that are chosen individually
for each function and they also compare the anytime performance
in terms of ECDF curves. Based on their experiments, Brockhoff et
al. conclude that for this setting, no clear advantage of LHS designs
can be observed and that large initial samples seem detrimental.

Morar et al. [41] also compare LHS and uniform sampling, but fix
the size of the initial design to 2- d and rather focus on the interplay
between initial design distribution and the infill criteria used in
the adaptive steps of the SMBO framework. They compare perfor-
mances on two variants of the Branin function, a classic benchmark
in SMBO research, and on two parameter tuning problems. They
conclude that the total budget has an important influence on the
ranking of the different SMBO algorithms. In line with our observa-
tions and conclusions, they recommend tuning of the SMBO design
if one is likely to see similar types of problems several times.

More recently, Lindauer et al. [36] analyze the sensitivity of
Bayesian optimization heuristics w.r.t. its own hyper-parameters.
This study, however, puts a much stronger emphasis on the various
design choices, and details for the initial sampling strategy are not
explicitly mentioned, although Table 3 in their work suggests that
this has been varied as well.

Availability of Project Data. While this report highlights a few of
our key findings, and demonstrates which statistics are possible to
obtain with the data, the full data base offers much more than we
can touch upon in a single conference paper. Not only can our data
be used to zoom further into the various settings described below,
but it also offers additional information about the function value
of the best initial design point and of the first point queried in an
adaptive fashion, as well as the distance of these points and of the
best solution to the optimal solution (in the decision space [—5, 514,
measured in terms of the L2 norm).
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Please note that most of the results reported below are based on
median values per (dimension, function, total budget, initial budget
ratio, design) combination. This is to avoid correcting factors for the
comparison between the Halton designs (for which we have 5 runs
for each of the 7 200 considered settings) and the other three designs
(for which we have 25 independent runs per setting, i.e., 5 SMBO
runs for each of the 5 random samples from the design). Detailed
results for each experiment are available in the data base, so that
one can easily perform statistical tests, or use other aggregation
methods. An interactive evaluation of the data is possible with the
very recently released tool HiPlot [25], which essentially produces
parallel coordinate plots through which one can easily navigate by
zooming and/or highlighting different parts of the data.

The interested reader can find all our project data on [10].

2 SEQUENTIAL MODEL-BASED
OPTIMIZATION

In many real-world applications like production engineering, nu-
merical simulations, or hyper-parameter tuning, the objective func-
tion f at hand is often of black-box nature. That is, (a) there is little
or no knowledge about the structure of f (in particular, we typically
do not have derivatives), and (b) function evaluations are expensive
in terms of computational and/or monetary resources (days of com-
putation time or actual physical experiments). As a consequence, in
the course of problem solving, one tries to keep the number of true
function evaluations low. In such settings, sequential model-based
optimization (SMBO, [27]) — also known under the term Bayesian
optimization! — advanced to the state-of-the-art in recent years and
is used extensively in many fields of research, e.g., within versatile
tools for automatic algorithm configuration [28].

In a nutshell, the key idea of SMBO is as follows: a regression
model, i.e., an approximation f to the true optimization problem f,
is fitted to the evaluated points of an initial design. Subsequently,
the model f serves as a cheap surrogate for the expensive true
objective function and is used to determine the next point(s) worth
being evaluated through the actual problem f. These points are
determined by optimizing a so-called infill criterion (also referred to
as acquisition function) which keeps balance between exploiting the
model (in the sense of striving to high-quality points) and exploring
the search-space regions which lack a good model fit (i.e., regions
with a high uncertainty about the quality of approximation f ). Note
that the optimization of the acquisition function itself is an (often
highly multimodal) optimization problem, which is typically solved
by state-of-the art solvers such as CMA-ES [24], Nelder-Mead [43],
or simply by standard Newton methods, if the surrogate model f
allows. The key here is that those algorithms now operate on f
and not on f, which can be evaluated much more efficiently. The
points proposed from the optimization of the acquisition function
are then evaluated through f and the surrogate f is updated to
account for the new information. The process is repeated until the
available budget of time or function evaluations is depleted.

Jones [30] was the first who used this approach in his Efficient
Global Optimization (EGO) algorithm. Therein, Gaussian processes
serve as the surrogate and expected improvement (EI) is adopted as

!Originally, Bayesian Optimization only referred to SMBO approaches with Bayesian
priors, but nowadays the term is often used to denote the whole class of SMBO methods.
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infill criterion. Following Jones’ seminal contribution, a plethora of
extensions were proposed by the community including multi-point
proposal [7] and multi-objective SMBO (e.g., [34]) making SMBO a
highly flexible framework with many interchangeable components
and facets. We refer the interested reader to [27] (and references
therein) for a comprehensive overview.

Our study is based on the classical EGO algorithm by Jones.

3 EXPERIMENTAL SETUP

Our study investigates the effect of the total budget, the size of the
initial design (i.e., the number of evaluations prior to building the
first surrogate), and the distribution of this initial design on the
quality of the final recommendation made by an off-the-shelf SMBO
algorithm. Below, we summarize the benchmark problems and so-
lution strategies (Section 3.1), as well as the performance measures
that we used to evaluate the different strategies (Section 3.2).

All our experiments are implemented in the R programming envi-
ronment [45]. To be more precise: the SMBO framework m1rMBO [6]
serves as the working horse for our experimental study, the smoof-
package [8] is used for an interface to the BBOB functions and the
interface package dandy [9] is used to generate the initial designs.
The latter delegates to packages qrng [26] and randtoolbox [14],
which implement quasi-random sequence generators as well as to
package lhs [13] for the LHS designs.

3.1 Benchmark Problems and Solvers

We use the following setup for our experimental analysis:

o The objective function f. As mentioned in the introduction, we
focus on the 24 functions from the (noiseless and single-objective)
BBOB test suite [22]. An overview of these functions is available
n [23]. We consider the first instance of each function, whose d-
dimensional variant we denote by f (d) We let F¥ be the collection
of these 24 functions. We study minimization as objective.

The problem dimension d. We consider five different search

space dimensions: d € D := {2, 3,4, 5, 10}.

Total budget n. The total number of function evaluations. We

consider six different budgets: n € N := {2¥ | x € {4,...,9}}.

Initial design ratio k: We consider initial designs of size [k - n]

with k € K := {0.1,0.2,...,1.0}.

Sampling design s. We study four different distributions from

which the d-dimensional initial design of size [k - n] is sampled:

- uniform sampling: R’s default random number generator
(Mersenne-Twister [38]) to generate uniform samples.

— Latin Hypercube Sampling (LHS [39]): “improved” LHS design
as suggested in [3].

— Sobol’ sequences [50]: randtoolbox implementation with
scrambling as proposed by Owen [44], and Faure & Tezuka [19].

— Halton designs [21] randtoolbox implementation with default
parameters.

More detailed definitions, motivations, and applications of these

distributions can be found, for example, in [15].

e Random seed r; - initial design. While the Halton point sets
are deterministic, the other designs produce random points. To
account for this randomness, we sample R; = 5 instances from
each of the three random (i.e., non-Halton) designs.
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e Random seed r4 - SMBO randomness. Finally, to compensate
for the randomness of the SMBO algorithm (note that the SMBO
process is stochastic itself, e.g., by means of a stochastic procedure
used to search the infill-criterion), we do R4 = 5 independent
runs per each of the settings fixed through the decisions above.

It should be noted that we do not vary the infill criterion (also
known as acquisition function), nor any other component of the
SMBO, but use the default variant of m1rMBO v1.1.4 with expected
improvement as infill criterion and a Kriging surrogate.

With the notation above, we consider a total number of |F| -
D] - IN] = 24 -5-6 = 720 different problems, and for each
of these problems we consider |S| - |[K| = 4 - 10 = 40 different
solution strategies. Here we consider the budget as integral part
of a problem, since SMBO algorithms are typically applied when
the budget is fixed a priori. We therefore distinguish between the
function f (@) that is to be optimized, and the problem (f,d, n) of
minimizing (%) with a given budget n.

As mentioned above, on each problem we perform 5 runs of each
strategy which is based on Halton designs and we perform 25 runs
for all other strategies. Our total number of experiments is thus

[F|- D] - IN|- K| - (1 +(IS| = 1) - Ri)) - Ra
=24-5-6-10-(1+(3-5)) -5 = 576 000.

Not all of these runs terminated successfully, due to problems with
the Kriging implementation used by m1rMBO. The problems occur
in particular with high total budget and low initial design ratio.
Here, the Kriging-routine obviously runs into problems when many
points are sampled close to each other as it often is the case when
SMBO runs converge into a (local) optimum. While for each n < 128
there are at least 99.8% successful runs this number reduces to
94% for n = 256 and 85.4% for n = 512. In total, we had 555598
(96.5%) successful runs. In all computations below we only consider
(f,d, n, k,s) combinations for which at least three runs terminated
successfully, i.e., provided their recommendation.

3.2 Performance Measures and VBS

For each of our experiments we record the value of the best solution
that has been evaluated during the entire run. We denote this value
by f(d, n,k,s,ri,ra). Since the BBOB functions have quite diverse
ranges of function values, we do not study these function values
directly, but rather follow standard practice in BBOB studies and
focus on the target precision, i.e., the gap to the global optimum,

p(fod ks, ri,ra) = f(d,n,k,s,ri,ra) — inf (@),

As mentioned above, we will restrict most of our analyses to the
median performance of each strategy on each problem. Our main
performance criteria is therefore

M(f,d,nk,s) =M{p(f.d,nk,s,ri,ra) | ri € Ri(s),ra € [5]}),
where M denotes the median and where we use the convention
that R;(Halton) = {1} and R;(s) = {1,2,...,5} =: [5] for the other
sampling designs s € S \ {Halton}.

Virtual Best Solver and Relative Target Precision. An important
concept in comparing portfolios of algorithms is the virtual best
solver (VBS). This VBS describes a hypothetical algorithm that for
each problem (i.e., each (f, d, n) combination in our case) selects an
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Figure 1: Overview of the virtual best solver (VBS), i.e., the
strategy (k, s) that achieved the best median performance on
the respective problem (f, d, n).

algorithm A from a given portfolio A that achieves the best perfor-
mance [32]. In our case, the algorithm portfolio is the collection of
all 40 (k, s) combinations. As we consider median performance, the
VBS is defined by selecting for each problem (f, d, n) the strategy
(k, s) that achieved the best median function value. For notational
convenience, we omit the explicit mention of the median and set

VBS(f,d,n) := min{M(f,d,n, k,s) | s € S,k € K}

Fig. 1 shows which strategy defined the VBS for which problem(s).
A first visual interpretation suggests that this data is relatively
unstructured; we will come back to this point further below.

By design, some of the BBOB functions are much “harder” than
others, so that we see substantial differences in the target precision
that can be achieved with a fixed budget n. To compensate for that in
our aggregations, we will frequently study the relative performance
of a strategy (k, s) compared to the VBS. To this end, we set

R(f,d,n,k,s) == M(f,d, n,k,s)/VBS(f,d, n)

and refer to R(f, d, n, k, s) as the relative target precision of strategy
(k,s) on problem (f, d, n). Note that these values are at least one,
where R(f,d,n, k,s) = 1 implies that strategy (k, s) achieved the
best median target precision among all the 40 different strategies.

4 AGGREGATED RESULTS

As shown in Fig. 1, it is not possible to derive simple rules that define
which strategy achieves the best performance on each of the BBOB
functions. In Fig. 2 we therefore count how often each strategy
forms the VBS. Therein, we observe a clear advantage for Halton
designs (it has the most “hits” for any given initial ratio except for
k = 100%), and we further observe a clear tendency towards small
initial ratios. However, we also see that each strategy “wins” at least
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Figure 2: Number of problems (f,d, n) for which the respec-
tive strategy forms the VBS.
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Figure 3: Boxplots of relative performances R(f,d,n, k,s)
across all 600 problems (f,d, n) with budget n < 256, shown
for all 40 different strategies (k, s). The y-axis is capped at 10.
one problem. Neither the simple counting statistics in Fig. 2 nor
the more detailed overview in Fig. 1 provide any information about
the magnitude of the advantage. We thus plot in Fig. 3 the distribu-
tion of the relative target precision R(f, d, n, k, s) of each strategy
(k, s), aggregated again over all 720 problems. This plot confirms
the tendency that spending a larger ratio of the total budget on
generating the initial design results in worse overall performance.
We also observe that although the Halton design generated with
k = 10% of the total budget has the best median performance,
the actual differences between the four designs are rather small.

A more detailed picture about the relative performances is
provided in Fig. 5. Here, we plot the median (over all 24 BBOB
functions) relative performance; i.e., the value in each cell repre-
sents M ({R(f,d,n,k,s) | f € {1,2,...,24}}) for the given dimen-
sion, budget, and strategy. We observe that in most cases the per-
formance worsens with increasing initial budget ratio k, and
this consistently for each problem dimension d and total budget n.

The values in the rows labeled “Total” are the median values over
all budgets (last row per dimension) and dimensions (bottom-most
rows), respectively. Noticeably, the influence of the sampling de-
sign vanishes with increasing dimension - independent from
the budget ratio. Aggregated over all dimensions, the differences
between the designs are small, as already observed in Fig. 3.

Remember that the values in Fig. 5 are always scaled by the VBS
that is specific for problem (f, d, n), but independent from strategy
(k, s). This implies that the rows are computed against the same
VBS, but different rows compare against different strategies. Values
in different rows should therefore only be compared with care.

5 PERFORMANCE BY FUNCTION

After having studied values that were aggregated across all 24
BBOB functions (see Section 4), we now take a closer look at the
differences between the different strategies on each of the functions.
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Figure 4: Logarithmic median target precision
log,o(M(f,d,n,k,s)) depending on the total budget. Re-
sults are shown for Halton (left) and Sobol (right) designs
with an initial budget of 10% of the total budget and across
all 5-dimensional BBOB functions. Gray boxes are due to
missing data (less than 3 successful runs, see Section 3.1).

Influence of the Total Budget. Fig. 4 reports the median target pre-
cision (shown on a log-scale) achieved by Halton and Sobol’ designs
with k = 10% initial budget, in dependence of function f and total
budget n. The plot reveals the functions that are easy (e.g., functions
1, 21, 22) and difficult (functions 10 and 12) for SMBO. Note that
the performance convergence is not always monotonically decreas-
ing with increasing total budget size. This might result from the
small number of repetitions (5 for the Halton design, 25 for Sobol’).
However, the differences are fairly small. Fig. 6 extends Fig. 4 to all
40 strategies (k, s). That is, for each 5-dimensional problem (f, 5, n)
a heatmap of the relative performances R(f, d, n, k, s) is shown for
all pairs of sampling design s and initial design ratio k. We observe
that, in particular for functions 15, 19, 23 and 24, the differences
between the different initial budgets are comparatively small. This
likely results from the functions’ highly multimodal landscapes,
which hinder SMBO from training reasonable surrogates.

Influence of the initial sample size k and design s. Fig. 7 shows
the relative median target precision R(f, d, n, k, s) for all 24 BBOB
functions, for a fixed budget of 128 function evaluations and variable
dimension (columns) and strategies (rows). We recall that the VBS
is defined per column, i.e., each column has at least one strategy
with R(f,d, n, k,s) = 1 (see Fig. 1).

We observe that the benefit of small initial budgets is important
for functions with at most medium-sized indices. This finding is
very plausible, as the first 14 functions mainly are separable and/or
unimodal - i.e., functions whose structure can be well exploited by
SMBO. However, for the group of multimodal functions (IDs
15 to 24), with the notable exception of functions 21 and 22, the
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Figure 5: Median (over all 24 BBOB functions) relative performance of R(f,d,n,k,s), by dimension and budget (rows) and

strategy (k, s) (columns).

differences between the different initial ratios are rather small, indi-
cating that SMBO does not perform much better than (quasi-)
random sampling in the initial phases of the optimization process.

We also see interesting cases in which larger ratios of initial
budget result even in better performance than small initial ratios.
An extreme case is function 12 in dimension d = 2. Its situation is
as follows. The VBS is defined by the (30%, Halton) strategy. The
differences between the Halton designs with k > 30% are rather
small, whereas for the other strategies smaller initial budgets are
preferable. By studying the absolute values in more detail, we find
that the Halton strategy identifies a point with absolute target
precision 24.9 when k > 30%. SMBO does not manage to find a
better point in any of its 128 — [30% - 128] = 89 adaptive evaluations.
The best median target precision of any of the other strategies
has target precision 58.6 — achieved by the (10%, LHS) strategy.
Looking further into the results of the 800 individual runs, we find
that 126 of them find a point of target precision smaller than 24.9.
The distribution of their initial ratios is not unanimous, as can be
see in the following table, which counts how often each initial ratio
k appears among these 126 runs. These results show how difficult
it is to give a general advice for the optimization of this function —
even when the budget is fixed and the function ID known.

k01 02 03 04 05 06 07 08 09 1
#]14 12 8 13 21 7 12 14 10 15
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6 RESTARTS VS. LONG RUNS

In the previous paragraph, we have started to look into the dis-
tribution of the target precisions. We now demonstrate how such
information can be used to study whether it is beneficial to use
the total budget of n function evaluations for a single long run, or
whether one should rather start two shorter runs of budget n/2
each, or four runs of budget n/4, etc.

Distribution of the Target Precisions. Crucial for the consideration
of restarts are the distributions of the function values (or, equiva-
lently, the distributions of the target precisions) achieved by the
different strategies (k, s). For reasons of space, we cannot go in
much detail here, but Fig. 8 demonstrates how these boxplots look
like. Note that this figure is for one specific combination of function
(f = 17), dimension (d = 5) and budget (n = 128). It aggregates the
target precision of all 40 strategies, i.e., of 800 runs in total. Our data
base contains one such plot for each of the 720 (f, d, n) problems.

Note that the dispersion of Halton designs are smaller, but this is
due to the fact that we do not perform resampling for this sequence.
For all pairs of (k,Halton) strategies with k > 50% the target preci-
sion of the best initial design point is slightly above 3. For k > 80%
none of the SMBO runs starting in this best initial design point
finds a solution of better target precision. For k € {60%, 70%}, only
one of the five runs each finds a better solution. Note that the length
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Figure 6: Heatmap visualization of relative performances R(f,d, n, k, s) by function, total budget, and strategy (k, s) for fixed

dimension d = 5. Values are capped at 3.

Relative approximation error R(f, d, n, k, s)

Initial design ratio

BBOB function
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of each of these SMBO runs is n — [k - n], which for k = 0.6 corre-
sponds to 51 adaptive SMBO steps. Such detailed information could
be very useful to identify weaknesses of the EGO approach,
and, hopefully, contribute towards better SMBO designs.

Computing median target precision of restarting SMBO. To inves-
tigate if, for a given problem (f, d, n), a restart strategy is beneficial
over a single long run, we need to extend our previous focus on
median target precision to different percentiles. To this end, let

Pq(f.d.n.k,s) :=Pqg ({p(f.d.n.k,s,ri,ra) | ri € Ri(s),ra € [5]}),

the g-th percentile of the target precisions achieved by strategy (k, s)
on problem (f, d, n) across all 5 (Halton) or 25 (Sobol’, LHS, uniform
designs) runs, respectively. For a fair comparison of one run of the
full budget n with two runs of budget n/2 (of the same strategy), we
compare the median M(f,d, n, k, s) (i.e., the 50-th percentile) with
theq:=1- \/1/_2-th percentile Py(f, d, n/2, k,s). With this value
of g, the probability that (at least) one of the two runs achieves a
target precision that is at least as good as Py(f, d, n/2, k, s) equals
1 - (1 -¢q)? = 1/2. This is identical to the probability that one
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long run achieves a target precision that is at least as good as
M(f,d, n,k,s). Note that we disregard a small bias in our data,
which results from the fact that we do not have 25 completely
independent runs. Instead, we use the same initial design sample
for five independent SMBO runs each — but, we ignore this effect in
the following computations. Also, given the small number of runs,
all numbers should be taken with care — the smaller the percentile,
the larger the uncertainty around the values. We nevertheless show
this example to demonstrate how one could systematically address
the question how to split a given budget into possibly parallel runs.

Fig. 9 illustrates an example for the relevant percentiles when
comparing one long run of budget n with two short ones of bud-
get n/2, and four even shorter ones of budget n/4. More precisely,
we fix in this figure the strategy to (10%,LHS) and the dimension
to d = 5, and we show log-scaled relative data. Each 3 X 6 box
corresponds to one of the 24 BBOB functions. As we scale the val-
ues within a box by its VBS, and afterwards show the percentile
ratios on a log-scale, the field with value 0.0 represents the com-
bination achieving the best target precision (i.e., the VBS) among
the displayed combinations. Not surprisingly, for most functions
this is the (1 - M)—th percentile of the full budget n = 512. Let
P]’i be the target precision of this (percentile, budget) combination

for a given function f. A value ¢ in field (g, n) is then to be read
as follows: the target precision Pg(n) := Pg(f,d = 5,n,10%, LHS)
satisfies Pg(n) = 109 - P;. Smaller values are therefore better. We
see that for f = 5,for example, our data suggests that a total budget
of 512 evaluations (value 0.4 when used as single run) is better used
for four runs of budget 128 each (value 0.1). We have marked in this
matrix all fields for which the long run compares unfavorably with
a restart strategy — the one corresponding to the neighboring field
on the lower left diagonal. Overall, we see that several such cases
exist, which confirms our previous finding that EGO does not
always compare favorably against quasi-random sampling.

7 CONCLUSIONS

In this paper we have presented a database for data-driven investiga-
tions of the sequential model-based optimization (SMBO) strategy
EGO [30]. The focus of our work is on analyzing the influence of
the (size and type of) initial design on the overall performance of
EGO. Our data base contains data for 720 different problems, which
are evaluated against a total of 40 different initial design strategies.

While we clearly observed that small initial designs are prefer-
able at a high-level view, we also found that each of the 40 con-
sidered combinations of design type and size achieved best per-
formance on at least one of the 720 problems. Our findings thus
confirm that an automated strategy selection method - like the
proof-of-concept approach presented in [47] — might indeed be
profitable. Moreover, we even identified cases in which the usage of
EGO does not provide any benefits over the initial (quasi-)random
sample — especially in case of highly multimodal problems.

Our long-term vision are SMBO approaches that dynamically
decide whether to take the next sample from a (quasi-)random dis-
tribution or whether to derive it from the surrogate model. Going
one step further, we believe that an adaptive choice of the acquisi-
tion function, and possibly even of the solver used to optimize the
latter, should bring substantial performance gains - in particular in
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Figure 9: Percentiles Py (f,d,n, k,s) of target precisions across
the 25 SMBO runs per function and dimension using an LHS
design with 10% initial budget and for the 2-dimensional
problems. The percentiles are scaled by the respective func-
tion’s best percentile, and the resulting ratios are shown on a
capped log10-scale. Red boxes indicate that the correspond-
ing strategy performs unfavorably against a restart strategy
(the one to the lower left).

the case in which the total budget is known in advance. Hence, we
need to “train” a final recommendation (last evaluation) instead of
achieving good anytime performance. These two mentioned ques-
tions fall under the umbrella of dynamic algorithm configuration,
which has been an important driver for the field of evolutionary
computation for the last decades [12, 16, 17, 31], and which has
recently also gained interest in machine learning communities [5].
Typically, the budget of common SMBO applications is too small
for a classical a priori (i.e., offline) landscape-aware selection of the
optimizer design based on supervised learning approaches (see [32]
for a survey). However, in case high-level properties — such as the
degree of (multi-)modality or the sizes of the problem’s attraction
basins — are known for the problem at hand, or can be guessed by
an expert, selecting a suitable initial design strategy is feasible.
Finally, we have seen that the performance of the different de-
signs was often quite comparable. To investigate the differences
in more detail, we suggest to consider the different strategies as a
portfolio of different algorithms. With this viewpoint, one could an-
alyze the marginal contributions [51] or Shapley values [20] of the
different designs, and leverage the information contained therein.
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