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ABSTRACT
We analyze the e�ects of including local search techniques into a
multi-objective evolutionary algorithm for solving a bi-objective
orienteering problem with a single vehicle while the two con�icting
objectives are minimization of travel time and maximization of the
number of visited customer locations. Experiments are based on a
large set of speci�cally designed problem instances with di�erent
characteristics and it is shown that local search techniques focusing
on one of the objectives only, improve the performance of the
evolutionary algorithm in terms of both objectives. The analysis
also shows that local search techniques are capable of sending
locally optimal solutions to foremost fronts of the multi-objective
optimization process, and that these solutions then become the
leading factors of the evolutionary process.
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1 INTRODUCTION
Local search techniques have been successfully applied to a large
variety of vehicle routing problems (VRP; see, e.g., [6], [9]). How-
ever, most of these works focus on classic, single-objective problem
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formulations which mostly are not su�cient for matching the re-
quirements of real-world applications. Transportation applications
frequently require consideration of additional properties in terms of
multiple objectives, optional customer locations, and time windows.

In this work, we analyze the e�ect of local search techniques
for a class of routing problems that includes all of these proper-
ties. In particular, we analyze the e�ect of integrating local search
techniques into a multi-objective evolutionary algorithm for rout-
ing a vehicle, where the objectives are minimization of travel time
and maximization of the number of visited locations. The set of
locations is divided into the two disjunct subsets of mandatory
and optional locations. We assume that each location corresponds
to one customer. Each mandatory customer can be visited at an
arbitrary point in time within the planning horizon, whereas each
optional customer cannot be visited earlier than a certain point in
time within the planning horizon.

Single vehicle routing problems with optional customers are
often referred to as "orienteering problems" in the literature, see,
e.g., [7], or [22] for a survey of problem variants. A bi-objective
model of an orienteering problem (without time windows) was �rst
formulated and solved heuristically in [13]. Since then the need
for multi-objective handling of orienteering problems has been
emphasized repeatedly (see, e.g., [4]). However, works that treat
proper multi-objective formulations of orienteering problems are
still rare.

Both [1] and [5] approximate the Pareto-frontier of a bi-objective
orienteering problem without time windows by solving a series
of single-objective optimization problems. The approach of [12]
solves a similar problem variant without transformation to single-
objective formulations. Instead, a multi-objective evolutionary al-
gorithm (MOEA) is used to generate a set of initial solutions, which
are then improved by an ejection chain process. In contrast to the
previously discussed works, [8] proposes an approach for the ori-
enteering problem with time windows. However, the considered
MOEA does not make use of local search. The empirical analysis
of this MOEA presented in [16] indicates that the algorithm’s per-
formance may depend signi�cantly on individual features of the
problem instance, and that the performance could be improved by
integration of local search methods. Considering this background,
the present works makes the following three main contributions:

• We integrate a number of alternative local search methods
into our multi-objective evolutionary concept proposed in
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[8], and we compare the resulting performances of the alter-
native approaches.
• We analyze a self-designed set of problem instances with
respect to a large variety of instance features. The analysis
illustrates the structural diversity of the instances, i.e., it
shows that the instances represent a well-suited test-bed
for comparing algorithms without over�tting to individual
instance features.
• We analyze the general e�ects of local search on the multi-
objective optimization process. We show that local search
improves the process by boosting o�spring solutions to fore-
most fronts, which leads to an increased selection pressure.

The remainder of the paper is structured as follows. In Section
2 we de�ne the considered class of routing problems. In Section 3
we introduce our approach of generating problem instances as well
as a large variety of instance features, and we present an instance
feature analysis for illustrating the structural diversity of the in-
stance set. In Section 4 we describe the multi-objective evolutionary
algorithm that we combine with di�erent local search methods in
Section 5. Section 6 describes our experimental setup as well as
the computational results of our analysis. Section 7 concludes the
paper.

2 PROBLEM DESCRIPTION
Each problem instance consists of a set C = {1, 2, . . . ,N } of lo-
cations, where location 1 is the start depot and location N is the
end depot of the vehicle. Travel distances between any pair i, j of
locations are denoted as di j . For the sake of notational convenience,
we assume that one distance unit corresponds to one unit of time.
All locations of C are mutually connected, and distances between
any pair i, j of locations are symmetric. We refer to the set of all
connections of pairs i, j as E. At time t = 0, the vehicle is located
at location 1, and at the end of the tour it must be located at lo-
cation N . The set C \ {1,N } of customer locations consists of the
subset Cm of mandatory locations and of the subset Co of optional
locations, with Cm \ Co = ;. Each optional customer location i
has an open time window with a lower bound ti > 0 and must
be accepted for service or rejected. For each location i 2 C , the
binary decision variable xci indicates whether customer location i
is visited or not. Decision variable xri j indicates whether or not the
road link connecting locations i and j is part of the vehicle’s route.
In order to make an appropriate trade-o� between maximization of
customer satisfaction (accepting all customers) and minimization of
travel costs (typically rejecting all optional customers) both of these
objectives are considered. The corresponding objective function
can be formulated as

min
xc ,x r

✓
( |C | �

X

i 2C
xci ), (

X

(i, j )2E
di jx

r
i j )
◆
.

We refer to [16] for an explicit statement of the full mathematical
decision model imposed by the described problem.

3 PROBLEM INSTANCES
Vehicle routing algorithms are often evaluated using the well-
established Solomon instances benchmark [21], which comprises
(with respect to the model introduced in Section 2) a variety of

instances with 50 and 100 customers in geographies with uniformly
distributed or clustered locations. However, only eight instances of
this benchmark set have both mandatory and optional customers,
as required by the model of Section 2.

In order to evaluate our algorithmic approach on an adequate
set of diverse and representative instances (avoiding over�tting to
instance features), we generate a larger benchmark set, taking into
account Solomon’s basic types of clustered, uniformly distributed
and mixed customer location geographies. We de�ne a systematic
generation process for problem instances providing (1) a wider
range of instance sizes in terms of both numbers of locations and
geographic scale, (2) variability in customer density and the number
of customer clusters, (3) smoother and systematic morphing of
clustered and uniform geographies, (4) variability in start and end
depot positions, and (5) a variety of di�erent ratios of mandatory
and optional customers.

After presenting the instance generation approach in Section 3.1,
we de�ne speci�c VRP-features as well as high-level geography
features in Section 3.2, both of which are used in Section 3.3 for a
detailed analysis of the characteristics of our generated problems.

3.1 Instance Generation
We conduct our experiments on a speci�cally designed set of 360
problem instances. These instances di�er in the number of cus-
tomers N 2 {50, 100, 200} (including both start and end depot), the
numbernc 2 {1, 2, 3, 5, 10} of clusters of customer locations, and the
fraction f 2 {0.25, 0.5, 0.75} of optional customers, representing a
variety of typical real-world applications.

As a starting point we generate a single geographical layout for
each combination of number of customers and number of clusters.
Randomly uniform instances (termed single-cluster instances) are
generated by randomly placing locations in the Euclidean plane,
starting with a bounding box of [0, 100]2 for N = 50 and doubling
the bounding box sides on doubling the number of customers. The
generation of clustered instances was introduced in [8] and works
as follows: 1) a latin hypercube design (LHS) of size nc forms the
cluster centers c1, . . . , cnc (the space-�lling property of LHS design
ensures well-spread cluster locations). 2) Each cluster is crowded
with bN /nc c random points from a multivariate Gaussian distribu-
tion N (ci , diag(di ,di )). The cluster center is used as the mean and
the distance di = mini,j d (ci , c j ) to the nearest cluster center as
the standard deviation in both dimensions to avoid overlapping of
clusters.

Moreover, we consider instances in-between clustered and uni-
form by adopting the concept of morphing (see [16–18]). In a nut-
shell, given two instances of same size, a minimal weighted point
matching is computed �rst between the point coordinates of the
source instances. This results in a one-to-one assignment of points.
In a subsequent step the point coordinates of the morphed instance
are generated by convex combination p = �p1 + (1 � � )p2 of the
paired points p1,p2 from the source instances. Here, the morphing
coe�cient � 2 [0, 1] regulates the similarity between the morphed
instance and its parents respectively (see Figure 1 for a smooth
transition e�ect between a uniform and a clustered instance with
� 2 {0, 0.5, 1}).
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Figure 1: Morphing of a clustered instance with two clusters
and a random instance of equal size with two depots (white
circles) in each case for di�erent morphing coe�cients � .

We use morphing to generate instances that are in-between a
random instance and an instance with �ve clusters for each cluster
size and corresponding instance size, resulting in 9 further geo-
graphical layouts. The point matching of depots and customers
is done separately within this procedure to ascertain, that there
is a smooth morphing between the coordinates of the depots and
customers. Otherwise it would be very likely to morph a depot with
a non-depot point.

In summary we come up with 24 geographies (3 random, 12
clustered, 9 morphed), see Figure 2 for examples. In the �nal step of
the generation process, we assign lower time window bounds to a
fraction of f 2 {0.25, 0.5, 0.75} customers randomly for each of our
geographies increasing the number of optional customers stepwise.
The lower bounds are sampled from an exponential distribution
with the rate parameter set accordingly. We start with a lower
bound limit of 400 time units for instances with 50 customers, and
double the limit for instances next in size each time. This process
is repeated �ve times with di�erent seeds for the random number
generator to obtain di�erent realizations of the underlying Poisson
process. The implementation of the instance generation is available
in the R package netgen [2].

3.2 Instance Features
Each instance that falls into the problem class of Section 2 is fully
characterized in terms of the coordinates of the locations in C , the
distances between any pair of locations, the partitioning of C into
Cm and Co , as well as the lower time window bounds of optional
customers. We derive the following instance features from these
elementary characteristics:

• average distance and standard deviation of distances be-
tween all pairs (i, j ) of locations i, j 2 C , all pairs of manda-
tory locations i, j 2 Cm and all pairs of optional locations
i, j 2 Co
• the ratio |Cm |/|Co | of the number of mandatory and optional
locations
• the ratio |Co |/|Cm [Co | of the number of optional and all
locations
• average and standard deviation of distances between all pairs
(1, i ) or (i,N ) with i 2 Cm , i 2 Co respectively
• distance between start depot and end depot d1N
• coordinates of the start depot (x1,�1) and end depot (xN ,�N )

3.3 Instance Feature Analysis
First, we compare the generated instances (“netgen instances”) with
instances introduced by [21] (“Solomon instances”). Second, we
perform a feature analysis on the netgen instances in order to
gain insights into the structural diversity of this newly generated
instance set.

The Solomon instances are frequently used in the orienteer-
ing literature [see, e.g., 15, Chapter 8]. However, these instances
are restricted to only eight geographies. Furthermore, 50% of the
instances have dynamic (optional) customers exclusively, i.e., all
customers have lower time window bounds ti > 0 and none of the
customers can be visited at a completely arbitrary point in time.
In contrast, the 360 considered netgen instances are based on 24
di�erent geographies (see Figure 2 for examples), contain both cus-
tomers with ti = 0 and customers with ti > 0 as well as a much
more diverse system of clustering.

We investigate the distributions of VRP features for both netgen
and Solomon instances. In particular, we identify the features, for
which a signi�cance test with the alternative of netgen instances
having a larger variance rejected the null hypothesis of equal vari-
ance. This holds true for 27 out of 77 features. For the remaining
features, where the statement holds for the opposite hypothesis,
however, di�erences in variance are very small and only marginally
signi�cant. A wider range of features indicates, that the instances
are more diverse and thus more types of real-world instances are be
covered. Moreover, we can see from Figure 3 that the VRP features
are very informative in that a huge fraction of the latter does not
correlate with most of the remaining ones. Thus, each of these
features presents additional and almost unique information.

4 THE MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM

The evolutionary algorithm developed here, follows the reproduc-
tion/selection pattern of NSGA-II [3], which is a widely accepted
multi-objective evolutionary algorithm. It uses a population of size
µ and performs an evolutionary loop for generating µ o�spring
solutions by variation. Selection is performed by ranking the union
set of parents and o�spring regarding non-domination, and creating
the next generation population by adding better ranked solutions
until it contains µ or more individuals. In case the new population
size exceeds µ, solutions with worst rank and smallest crowding
distance are removed. For our considered VRP problem, encoding
and variation operators are adapted. The adaptations are described
in the following.

4.1 Encoding
A solution to the vehicle routing problem de�ned in Section 2
consists of two main components: a subset of visited customers and
an optimal tour for visiting those customers. In a solution candidate,
selected (i.e., visited) customers are expressed via a binary string,
while the sequence of visits is encoded as a permutation string.
Both strings are of length N � 2, i.e., start and end depots are
not explicitly encoded as they are not subject to change during
the evolution. Formally, the binary string B = (b2, . . . ,bN�1) 2
{0, 1}N�2 indicates for each customer i 2 C \ {1,N } whether it
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Figure 2: Examplary geographies of the generated problem instances.
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Figure 3: For eachVRP feature f the fraction of TSP-features
� with |cor ( f ,�) |  0.1. VRP features with fraction  0.25 are
omitted.

is visited (bi = 1) or not (bi = 0). A schematic example for two
scenarios encoded in the suggested way is shown in Figure 4.

Figure 4: Two encoding examples. Deactivated customers are
shown in grey and determined by a 0 in the activation chro-
mosome. Note that they remain part of the permutation
string of the tour, however they are not considered during
tour planning and evaluation.

For practical reasons and to ensure constant genome length over
all individuals, we additionally introduce a probability encoding

for each position in the binary string as strategy parameters to
distinguish between the subsetsCm andCo ofC . Herein, we assign
a �ip probability pi 2 [0, 1] for each element in the binary string.
If pi = 0, the value of bi cannot change throughout variation
leading to a �xed activation or deactivation of a customer. This
way we ensure that customers from Cm always stay obligatory. A
probability 0 < pi  1 denotes dynamic customers from Co1.

Service request times tj for a customer j 2 C are directly in-
tegrated into cost computation for traveling an edge (i, j ) during
evaluation. If a customer’s service request is not yet available (later
request time), the vehicle remains waiting at the previous customer
and waiting time is added to tour length. This way, all solutions
are feasible (although sometimes ine�cient).

4.2 Variation
The combined representation of solutions by two chromosomes
demands for special variation operators, which we constructed
as combinations of standard mutation and crossover operations
respectively.

Swap/Flip-Mutation: The permutation chromosome is varied by
repeated pairwise swapping of randomly selected entries. This is
controlled by parameter �p 2 N which determines the maximum
number of swaps performed. The actual number of swaps is drawn
uniformly at random from {0, . . . ,�p } ⇢ N. Simultaneously, the
binary string undergoes a �ip mutation, where each position bi 2
{0, 1} is �ipped with probability pi 2 [0, 1], where pi is encoded in
the strategy parameters.

PMX/One-Point-Crossover: The crossover of two solutions is
performed with Partially Mapped Crossover (PMX) for the permu-
tation string and with One-Point-Crossover for the binary string. In
PMX o�spring is generated by interchanging a sub-sequence of the
parental solutions and repairing violations to the permutation [19].
One-Point-Crossover recombines o�spring by splitting up the bi-
nary string at a random position and alternately connecting the
parts.

The in�uence of Swap/Flip-mutation is twofold: while swapping in-
side the permutation only changes the order of visits to customers,
1Note that this is not necessary when individuals of varying length are handled ade-
quately. However, the disposition of customers inside the chromosome may contribute
as temporarily inactive building blocks to other solutions in the evolutionary pro-
cess. Especially in the light of multi-objective optimization where di�erent activation
scenarios are considered at once, related tour building blocks can be bene�cial.
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�ip mutation in�uences tour length by activating or deactivating
customers. Contrary, the crossover operator is expected to recom-
bine fragments of tours as well as "sub-scenarios" of customers
(activated and deactivated) into new – hopefully e�cient – set-
tings.

5 INTEGRATION OF LOCAL SEARCH
In order to improve the performance of NSGA-II for the bi-objective
orienteering problem de�ned in Section 2, we transform it to a
memetic approach by integrating local search mechanisms. In the
following Section 5.1 we detail the injection point of local search
into the NSGA-II algorithmic architecture. In Section 5.2 we brie�y
describe the local search strategies applied.

5.1 Injection Point for Local Search
For the considered VRP, we identify the optimization of the vehicle’s
tour length as the more di�cult goal of optimization and restrict
local search integration to integrating di�erent TSP solvers. The
selection of an adequate set of optional customers is left to the
unbiasedmutation operator.We assume, thatmutation and diversity
preserving measures of NSGA-II ensure a good subset selection.

The second objective – vehicle’s tour length – is addressed by
considering TSP as a relaxed problem without service request times.
Note, that a tour length resulting from TSP optimization is only
a lower bound of the tour length of the VRP. Respecting service
requests during evaluation can eventually lead to longer tours than
in the original solution before applying local search. Thus, TSP
local search is injected into the NSGA-II architecture after o�spring
generation and before selection of the next generation ensuring the
removal of (at least) substantially deteriorated individuals. More-
over, local search is only applied to o�spring individuals and parents
at �ve distinct points in time (0%, 25%, 50%, 75%, and 100% of total
generations).

5.2 Local Search Methods
Here, we apply three heuristic approaches to solve the TSP problem
inside our MOP:

The basic 2-opt heuristics, which repeatedly tries to remove edge
crossings from a tour is based on the insight, that in Euclidean
graphs planar tours are more cost-e�cient than non-planar.

LKH-2 [10] (denoted as LKH in the following) is a very e�cient
implementation of the Lin-Kerninghan algorithm extended to k-
opt sub-moves while such moves alter a tour by replacing k edges
such that a tour of shorter length is obtained. More speci�cally,
5-exchange moves are combined with a speci�c nearest neighbour
heuristic and a measure resulting from sensitivity analysis of mini-
mum spanning trees helps to identify excellent candidate sets of
reasonable size. LKH proved to be the state of the art solver in
inexact TSP solving since its introduction in 2000.

The edge assembly crossover (EAX) genetic algorithm [20] com-
bines edges from two parent tours with a small number of new,
short edges based on a sophisticated tabu-search strategy focus-
ing on very high-quality parent solutions. The initial population is
formed by means of the 2-opt heuristic and diversity of candidate
solutions is ensured by relying on an entropy-based mechanism.
The authors show that the EAX is competitive to LKH on commonly

studied Euclidean TSP instances and even outperforms LKH on spe-
ci�c instances [20]. A systematic comparison of both algorithms
can be found in [14].

Note, that the original implementations of LKH and EAX only
support closed TSP instances. The VRP, however, consists of open
tours connecting start and end depots. Therefore problem instances
are transformed on-the-�y to be handled by the local strategies:
Start and end depots are replaced by introducing a virtual node
with outgoing edge weights of the start depot and incoming edge
weights of the end depot yielding a closed but asymmetric graph.
The asymmetric graph is accepted by the LKH implementation. For
EAX a second transformation of the asymmetric closed instance
into a symmetric closed instance is necessary. This is achieved by
duplicating nodes and setting in�nite small distances between twin
nodes. In this construction one node is responsible for all incoming
and the other node for the outgoing distances. All other distances
are set to in�nity [11].

6 COMPUTATIONAL EXPERIMENTS
6.1 Experimental Setup
NSGA-II is contrasted to memetic NSGA-II variants, i.e., combined
with 2-opt, LKH and EAX local search based on 10 independent runs
each. Local search terminated by internal termination criteria of
the respective approaches. Table 1 lists general parameter settings
while instance sizes are set to 50 · 2K ,K = 1, 2, 3.

Table 1: General algorithm parameters’ scheme.

Population size µ = 100 · 2K
Swap number �p = 2 · 2K
Flip probability 1

N�2
Function evaluations � = 6, 500, 000 · 2K
Internal local search only at 0%, 25%, 50%, 75%, and

100% of total Generations

However, for a detailed local search analysis we used
� = 65, 000 · 2K on instance sizes of 50 and 100 customers.

6.2 Analysis of Local Search E�ects
The di�erent algorithm variants are compared in terms of obtained
Dominated Hypervolume (HV) [23]. HV is computed for each prob-
lem instance using the overall nadir point plus (1, 1)T as reference
point. For this purpose algorithm results are combined for all vari-
ants in order to obtain the borders of the required bounding box.
Subsequently, the HV values are normalized per instance for visu-
alization on a common scale, see Figure5.

It becomes obvious that the memetic NSGA-II variant integrating
TSP local search strategies signi�cantly (Wilcoxon rank test used
to reject equality) improves the original algorithm performance
(EA_noLS). This e�ect even increases with problem dimensionality,
i.e., with instance size. Moreover, the superiority of state-of-the-art
inexact TSP solvers w.r.t. simple local search heuristics such as
2-opt is re�ected. Whereas no relevant distinction can be made
between LKH and EAX, the improvement gained by a hybrid with
2-opt is signi�cantly smaller for all instance sizes. Moreover, the
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Figure 5: Algorithm results in terms of obtained mean hypervolume. The EA was either applied without local search ("noLS")
or as a memetic variant combined with di�erent local searches. Instance sizes n are marked together with the number of
clusters cl . Morphed instances are assigned cl = 0.

advantage of 2-opt integration decreases with increasing number
of clusters while the opposite is true for the sophisticated strategies
LKH and EAX.

Note that the HV values cannot be compared across instances
due to di�erent maximum numbers of points on the Pareto front as
well as varying shapes of the latter. The increasing HV trend along
with the instance size, however, can simply be explained by the fact
that with increasing number of nodes, independent from the ratio
of dynamic customers, the number of points on the Pareto front
gets higher in general.

In addition to the overall gain in hypervolume performance, we
investigate the observed e�ects of local search application in detail.
Therefore, we recorded the population development of parent and
o�spring sub-populations during the whole evolutionary process
in separate experiments with 65,000 allowed function evaluations
per run. Figure 6 shows the development of the Pareto front at spe-
ci�c generations. Here, we depict the generations for which local
search has been activated, and the respective generation before for
which EA has performed a maximum of generations since the last
local search. For comparison reasons we also show the Pareto front
development without application of local search. At generations
with activated EAX local search, we observe a strong performance
gain regarding tour length. Especially in the beginning of the evo-
lutionary process, local search pushes solutions towards shorter
tour lengths while keeping the customer setting2. During interme-
diate application of only MOEA variation operators, however, the
population diversi�es and explores additional customer con�gu-
rations. Subsequently, these solutions are again pushed towards
shorter tours by the next local search application. This observa-
tion is especially interesting, as it suggests that the integration of
single-objective local search operators can still largely contribute
to performance of the multi-objective solution.

Derived from the above discussion based on qualitative observa-
tions, we quantitatively investigate the in�uence of local search on

2As the local search only in�uences the permutation encoding part of a solution’s
chromosome, customer con�gurations do not change.

the increase in algorithmic performance in more detail. Speci�cally,
we aim to gain insight into two further aspects of the memetic
approach: (1) the rationale of the chosen injection point for local
search and (2) how sparsely applied local search in�uences popula-
tion development in the course of a complete algorithm run. The
discussion is based on two hypotheses:
Hypothesis 1: The performance increase by integrating local search
only for TSP suggests that o�spring individuals are strongly boosted
to lower (better) fronts.

In order to check this hypothesis, we speci�cally recorded the
front positions individuals had during non-dominated sorting and
selection during our additional experiments. Figure 7 shows the
distribution of front positions for all individuals and runs regarding
the �rst three fronts. As representatives, we show 2-opt and EAX
as di�erently performing local search strategies and pure NSGA-II
for comparison.

We observe, that the application of local search to o�spring
individuals leads to a signi�cant larger amount of selected o�spring
in fronts 1 to 3 at four points in time (25%, 50%, 75% and 100%)
than the application of standard variation both in between local
search and for pure NSGA-II. This holds for state-of-the-art high
performing as well as for simple and only fair performing local
search strategies, although modern approaches like EAX contribute
far stronger to convergence, astonishingly also at late generations.
This leads to two conclusions: First, although TSP local search
strategies do not address the VRP tours (including service requests)
directly, the found TSP solutions are often advantageous also for
the vehicle routes. I.e., also inexact expert knowledge integration
can contribute to solution quality. Second, even boosting solution
quality at only few points in time during evolution contributes to
faster convergence. This aspect leads to the second hypothesis.
Hypothesis 2: Boosted o�spring individuals originating from local
search serve as "forerunners" and increase selection pressure for the
intermediate evolutionary process.

For �nding empirical evidence supporting this hypotheses, we
deeply investigate the recorded data on all individuals throughout
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Figure 8: Left: Detailed depiction of the life-line of each in-
dividual generated at four selected generations (1, 163, 325,
and 487) for NSGA-II without local search. Right: Detailed
depiction of the life-line of each individual generated dur-
ing local search which is only applied in the above genera-
tions. All other o�spring is generated by standard variation.

the evolutionary process and speci�cally concentrate on the lifespan
of o�spring individuals which survived selection after creation. For
each individual the remaining lifespan until algorithm termination
is determined. Figure 8 shows lifespans of all selected o�spring

individuals from generations 1, 163, 325, and 487. EAX local search
was performed for Figure 8 (right) whereas no local search was
performed in Figure 8 (left). Lifespan was investigated at the same
points in time in both cases. This exemplary behavior shown here
is transferable to all runs.

The results show a distinct longer lifespan for individuals result-
ing from a local search operation than for solutions generated by
standard variation. Some individuals even survive more than 3/4
of the evolutionary process. On the one hand, this impressively
demonstrates the power of the applied local search approach in gen-
erating good solutions even for VRP tour length. It suggests, that
few local searches su�ce to keep good genetic information in the
population. On the other hand, individuals with a long lifespan be-
come almost constant members of the population occupying places
permanently. This leads to higher selection pressure for individuals
striving for membership in the population during the evolutionary
process. Finally, a longer lifespan theoretically enables individuals
to spread genetic information more often than individuals which
outlast only few generations.
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7 CONCLUSIONS
We address a class of bi-objective vehicle routing problems and
propose a memetic multi-objective algorithm based on NSGA-II
into which we integrated state-of-the-art (but in the context of the
problem inexact) local search strategies for optimizing the vehicle’s
tour. In numerical experiments, we demonstrate the good perfor-
mance of the memetic strategies and analyze the e�ects of local
search in detail. Thereby, we �nd evidence that our local search
integration (1) outperforms the original NSGA-II, (2) is capable of
sending locally optimal individuals to foremost fronts of the NSGA-
II selection process and (3) signi�cantly extending the lifespan of
these individuals making them leading factors in the evolutionary
process. Interestingly, focusing on only one of the objectives within
local search combined with the EA characteristics substantially
improves both objectives along the algorithm run, even given the
very small number of local searches used.

Moreover, we present a set of problem-tailored features char-
acterizing problem instances of the class of so-called orienteering
problems. Together with presenting a set of systematically gen-
erated instances with di�erent levels of clustering a well-de�ned
benchmark set for small to moderate instance sizes together with its
characteristics is provided. These instances are shown to be more
comprehensive and �exible than the commonly used Solomon in-
stances.

This work o�ers many perspectives for future directions of re-
search: The in-depth analysis of the local search in�uence can be
extended in order to identify bene�cial heredity patterns induced
by local search. This may lead to sophisticated local search inte-
gration guidelines or even to inspiration for variation operator
design. Moreover, we will compare the results to linear program-
ming techniques generating points on the tradeo� surface in several
parallel or sequential runs and relate all respective algorithm perfor-
mances to instance characteristics. The long-term goal is to design
an e�cient multi-objective memetic algorithm which dynamically
optimizes the orienteering problem, i.e., without the full knowledge
of request times.
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