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smoof: Single- and Multi-Objective
Optimization Test Functions
by Jakob Bossek

Abstract Benchmarking algorithms for optimization problems usually is carried out by running the
algorithms under consideration on a diverse set of benchmark or test functions. A vast variety of
test functions was proposed by researchers and is being used for investigations in the literature. The
smoof package implements a large set of test functions and test function generators for both the single-
and multi-objective case in continuous optimization and provides functions to easily create own test
functions. Moreover, the package offers some additional helper methods, which can be used in the
context of optimization.

Introduction

The task of global optimization is to find the best solution x = (x1, . . . , xn)
T ∈ X according to a set

of objective functions F = { f1, . . . , fm}. If input vectors as well as output values of the objective
functions are real-valued, i. e., fi : Rn → R the optimization problem is called continuous . Otherwise,
i.e., if there is at least one non-continuous parameter, the problem is termed mixed. For m = 1, the
optimization problem is termed single-objective and the goal is to minimize a single objective f , i. e.,

x∗ = arg minx∈X f (x) .

Clearly, talking about minimization problems is no restriction: we can maximize f by minimizing
− f . Based on the structure of the search space, there may be multiple or even infinitely many global
optima, i. e., x∗ ∈ X∗ ⊆ X. We are faced with a multi-objective optimization problem if there are at
least two objective functions. In this case as a rule no global optimum exists since the objectives are
usually conflicting and there is just a partial order on the search space; for sure (1, 4)T ≤ (3, 7)T makes
sense, but (1, 4)T and (3, 2)T are not comparable. In the field of multi-objective optimization we are
thus interested in a set

PS = {x ∈ X | @ x̃ ∈ X : f (x̃) � f (x)} ⊆ X

of optimal trade-off solutions termed the Pareto-optimal set , where � defines the dominance relation .
A point x ∈ X dominates another point x̃ ∈ X, i. e., x � x̃ if

∀ i ∈ {1, . . . , m} : fi(x) ≤ fi(x̃)

and ∃ i ∈ {1, . . . , m} : fi(x) < fi(x̃).

Hence, all trade-off solutions x∗ ∈ PS are non-dominated . The image of the Pareto-set PF = f (PS) =
( f1 (PS) , . . . , fm (PS)) is the Pareto-front in the objective space. See Coello et al. (2006) for a thorough
introduction to multi-objective optimization.

There exists a plethora of optimization algorithms for single-objective continuous optimization in
R (see the CRAN Task View on Optimization and Mathematical Programming (Theussl and Borchers) for a
growing list of available implementations and packages). Mullen (2014) gives a comprehensive review
of continuous single-objective global optimization in R. In contrast there are just a few packages,
e. g., emoa (Mersmann, 2012), mco (Mersmann, 2014), ecr (Bossek, 2017a), with methods suited to
tackle continuous multi-objective optimization problems. These packages focus on evolutionary
multi-objective algorithms (EMOA), which are very successful in approximating the Pareto-optimal
set.

Benchmarking optimization algorithms

In order to investigate the performance of optimization algorithms or for comparing of different
algorithmic optimization methods in both the single- and multi-objective case a commonly accepted
approach is to test on a large set of artificial test or benchmark functions. Artificial test functions exhibit
different characteristics that pose various difficulties for optimization algorithms, e. g., multimodal
functions with more than one local optimum aim to test the algorithms’ ability to escape from local
optima. Scalable functions can be used to access the performance of an algorithm while increasing
the dimensionality of the decision space. In the context of multi-objective problems the geometry of
the Pareto-optimal front (convex, concave, . . . ) as well as the degree of multimodality are important
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characteristics for potential benchmarking problems. An overview of single-objective test function
characteristics can be found in Jamil and Yang (2013). A thorough discussion of multi-objective
problem characteristics is given by Huband et al. (2006). Kerschke and Dagefoerde (2015) recently
published an R package with methods suited to quantify/estimate characteristics of unknown opti-
mization functions at hand. Since the optimization community mainly focuses on purely continuous
optimization, benchmarking test sets lack functions with discrete or mixed parameter spaces.

Related work

Several packages make benchmark functions available in R. The packages cec2005benchmark (Gonzalez-
Fernandez and Soto, 2015) and cec2013 (Zambrano-Bigiarini and Gonzalez-Fernandez, 2015) are simple
wrappers for the C implementations of the benchmark functions for the corresponding CEC 2005/2013
Special Session on Real-Parameter Optimization and thus very limited. The globalOptTests (Mullen,
2014) package interfaces 50 continuous single-objective functions. Finally the soobench (Mersmann
and Bischl, 2012) package contains some single-objective benchmark functions and in addition several
useful methods for visualization and logging.

Contribution

The package smoof (Bossek, 2017b) contains generators for a large and diverse set of both single-
objective and multi-objective optimization test functions. Single-objective functions are taken from the
comprehensive survey by Jamil and Yang (2013) and black-box optimization competitions (Hansen
et al., 2009; Gonzalez-Fernandez and Soto, 2015). Moreover, a flexible function generator introduced
by Wessing (2015) is interfaced. Multi-objective test functions are taken from Deb et al. (2002); Zitzler
et al. (2000) and Zhang et al. (2009). In the current version – version 1.4 in the moment of writing –
there are 99 continuous test function generators available (72 single-objective, 24 multi-objective, and 3
function family generators). Discontinuous functions (2) and functions with mixed parameters spaces
(1) are underrepresented at the moment. This is due to the optimization community mainly focusing
on continuous functions with numeric-only parameter spaces as stated above. However, we plan to
extend this category in upcoming releases.

Both single- and multi-objective smoof functions share a common and extentable interface, which
allows to easily add new test functions. Finally, the package contains additional helper methods which
facilitate logging in the context of optimization.

Installation

The smoof package is available on CRAN, the Comprehensive R Archive Network, in version 1.4. To
download, install and load the current release, just type the code below in your current R session.

> install.packages("smoof")
> library(smoof)

If you are interested in toying around with new features take a look at the public repository at GitHub
(https://github.com/jakobbossek/smoof). This is also the place to complain about problems and
missing features / test functions; just drop some lines to the issue tracker.

Diving into the smoof package

In this section we first explain the internal structure of a test function in the smoof package. Later we
take a look on how to create objective functions, the predefined function generators and visualization.
Finally, we present additional helper methods which may facilitate optimization in R.

Anatomy of smoof functions

The functions makeSingleObjectiveFunction and makeMultiObjectiveFunction respectively can be
used to create objective functions. Both functions return a regular R function with its characteristic
properties appended in terms of attributes. The properties are listed and described in detail below.

name The function name. Mainly used for plots and console output.

id Optional short name. May be useful to index lists of functions.

description Optional description of the function. Default is the empty string.
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fn The actual implementation of the function. This must be a function of a single argument x.

has.simple.signature Logical value indicating whether the function fn expects a simple vector of
values or a named list. This parameter defaults to TRUE and should be set to FALSE, if the function
depends on a mixed parameter space, i. e., there are both numeric and factor parameters.

par.set The set of function parameters of fn. smoof makes use of the ParamHelpers (Bischl et al.,
2016) package to define parameters.

noisy Is the function noisy? Default is FALSE.

minimize Logical value(s) indicating which objectives are to be minimized (TRUE) or maximized
(FALSE) respectively. For single objective functions a single logical value is expected. For
multi-objective test functions a logical vector with n.objectives components must be provided.
Default is to minimize all objectives.

vectorized Does the function accept a matrix of parameter values? Default is FALSE.

constraint.fn Optional function which returns a logical vector indicating which non-box-constraints
are violated.

tags A character vector of tags. A tag is a kind of label describing a property of the test function, e.g.,
multimodel or separable. Call the getAvailableTags function for a list of possible tags and see
(Jamil and Yang, 2013) for a description of these. By default, there are no tags associated with
the test function.

global.opt.params If the global optimum is known, it can be passed here as a vector, matrix, list or
data.frame.

global.opt.value The function value of the global.opt.params argument.

n.objectives The number of objectives.

Since there exists no global optimum in multi-objective optimization, the arguments global.opt.params
and global.opt.value are exclusive to the single-objective function generator. Moreover, tagging is
possible for the single-objective case only until now. In contrast, the property n.objectives is set to 1
internally for single-objective functions and is thus no parameter of makeSingleObjectiveFunction.

Creating smoof functions

The best way to describe how to create an objective function in smoof is via example. Assume we
want to add the the two-dimensional Sphere function

f : R2 → R, x 7→ x2
1 + x2

2 with x1, x2 ∈ [−10, 10]

to our set of test functions. The unique global optimum is located at x∗ = (0, 0)T with a function value
of f (x∗) = 0. The code below is sufficient to create the Sphere function with smoof.

> fn <- makeSingleObjectiveFunction(
> name = "2D-Sphere",
> fn = function(x) x[1]^2 + x[2]^2,
> par.set = makeNumericParamSet(
> len = 2L, id = "x",
> lower = c(-10, -10), upper = c(10, 10),
> vector = TRUE
> ),
> tags = "unimodal",
> global.opt.param = c(0, 0),
> global.opt.value = 0
> )
> print(fn)
Single-objective function
Name: 2D-Sphere
Description: no description
Tags:
Noisy: FALSE
Minimize: TRUE
Constraints: TRUE
Number of parameters: 2

Type len Def Constr Req Tunable Trafo
x numericvector 2 - -10,-10 to 10,10 - TRUE -
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Global optimum objective value of 0.0000 at
x1 x2

1 0 0

Here we pass the mandatory arguments name, the actual function definition fn and a parameter
set par.set. We state, that the function expects a single numeric vector parameter of length two
where each component should satisfy the box constraints (x1, x2 ∈ [−10, 10]). Moreover we let the
function know its own optimal parameters and the corresponding value via the optional arguments
global.opt.param and global.opt.value. The remaining arguments fall back to their default values
described above.

As another example we construct a mixed parameter space function with one numeric and one
discrete parameter, where the latter can take the three values a, b and c respectively. The function is
basically a shifted single-objective Sphere function, where the shift in the objective space depends on
the discrete value. Since the function is not purely continuous, we need to pass the calling entity a
named list to the function and thus has.simple.signature is set to FALSE.

> fn2 <- makeSingleObjectiveFunction(
> name = "Shifted-Sphere",
> fn = function(x) {
> shift = which(x$disc == letters[1:3]) * 2
> return(x$num^2 + shift)
> },
> par.set = makeParamSet(
> makeNumericParam("num", lower = -5, upper = 5),
> makeDiscreteParam("disc", values = letters[1:3])
> ),
> has.simple.signature = FALSE
> )
> print(fn2)
Single-objective function
Name: Shifted-Sphere
Description: no description
Tags:
Noisy: FALSE
Minimize: TRUE
Constraints: TRUE
Number of parameters: 2

Type len Def Constr Req Tunable Trafo
num numeric - - -5 to 5 - TRUE -
disc discrete - - a,b,c - TRUE -

> fn2(list(num = 3, disc = "c"))
[1] 15

Visualization

There are multiple methods for the visualization of 1D or 2D smoof functions. The generic plot
method draws a contour plot or level plot or a combination of both. The following code produces the
graphics depicted in Figure 1 (left).

> plot(fn, render.contours = TRUE, render.levels = TRUE)

Here the argument render.levels achieves the heatmap effect, whereas render.contours activates
the contour lines. Moreover, numeric 2D functions can be visualized as a 3D graphics by means of the
plot3D function (see Fig. 1 (right)).

> plot3D(fn, contour = TRUE)

If you prefer the visually appealing graphics of ggplot2 (Wickham, 2009) you can make use of
autoplot, which returns a ggplot2 object. The returned ggplot object can be easily modified with
additional geometric objects, statistical transformations and layers. For instance, let us visualize the
mixed parameter function fn2 which was introduced in the previous subsection. Here we activate
ggplot2 facetting via use.facets = TRUE, flip the default facet direction and adapt the limits of the
objective axis by hand. Figure 2 shows the resulting plot.
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Figure 1: Contour plot (left) and 3D plot (right) of the two-dimensional Sphere function.

library(ggplot2)
pl <- autoplot(fn2, use.facets = TRUE) # basic call
pl + ylim(c(0, 35)) + facet_grid(. ~ disc) # (one column per discrete value)
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Figure 2: Plot of the mixed decisions space shifted Sphere function.

In particular, due to the possibility to subsequently modify the ggplot objects returned by the
autoplot function it can be used effectively in other packages to, e. g., visualize an optimization
process. For instance the ecr package makes extensive use of smoof functions and the ggplot2 plots.

Getter methods

Accessing the describing attributes of a smoof function is essential and can be simply realized by
attr("attrName",fn) or alternatively via a set of helper functions. The latter approach is highly
recommended. By way of example the following listing shows just a few of the available helpers.

> getGlobalOptimum(fn)$param
x1 x2

1 0 0
> getGlobalOptimum(fn)$value
[1] 0
> getGlobalOptimum(fn)$is.minimum
[1] TRUE
> getNumberOfParameters(fn)
[1] 2
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> getNumberOfObjectives(fn)
[1] 1
> getLowerBoxConstraints(fn)
x1 x2

-10 -10

Predefined test function generators

Extending smoof with custom objective functions is nice to have, but the main benefit in using this
package is the large set of preimplemented functions typically used in the optimization literature. At
the moment of writing there are in total 72 single objective functions and 24 multi-objective function
generators available. Moreover there are interfaces to some more specialized benchmark sets and
problem generators which will be mentioned in the next section.

Generators for single-objective test functions

To apply some optimization routines to say the Sphere function you do not need to define it by hand.
Instead you can just call the corresponding generator function, which has the form makeFUNFunction
where FUN may be replaced with one of the function names. Hence, the Sphere function can be
generated by calling makeSphereFunction(dimensions = 2L), where the integer dimensions argument
defines the dimension of the search space for scalable objective functions, i. e., functions which are
defined for arbitrary parameter space dimensions n ≥ 2. All 72 single-objective functions with their
associated tags are listed in Table 1. The tags are based on the test function survey in (Jamil and Yang,
2013). Six functions with very different landscapes are visualized in Figure 3.
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Figure 3: Two-dimensional test functions Matyas (top left), Rastrigin (top middle), Himmelblau (top
right), Zettl (bottom left), Three Hump Camel (bottom middle) and Generalized Drop Wave (bottom right).

Beside these functions there exist two additional single-objective generators, which interface
special test function sets or function generators.

BBOB The 24 Black-Box Optimization Benchmark (BBOB) 2009 (Hansen et al., 2009) functions can be
created with the makeBBOBFunction(fid,iid,dimension) generator, where fid ∈ {1, . . . , 24} is
the function identifier, iid is the instance identifier and dimension the familiar argument for
specifying the parameter space dimension.

MPM2 The problem generator multiple peaks model 2 (Wessing, 2015) is accessible via the function
makeMPM2Function. This problem generator produces multimodal problem instances by com-
bining several randomly distributed peaks (Wessing, 2015). The number of peaks can be set
via the n.peaks argument. Further arguments are the problem dimension, an initial seed for
the random numbers generator and the topology, which accepts the values ‘random’ or ‘funnel’
respectively. For details see the technical report of the multiple peaks model 2 Wessing (2015).
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Function Tags

Ackley continuous, multimodal, differentiable, non-separable, scalable
Adjiman continuous, differentiable, non-separable, non-scalable, multimodal
Alpine N. 1 continuous, non-differentiable, separable, scalable, multimodal
Alpine N. 2 continuous, differentiable, separable, scalable, multimodal
Aluffi-Pentini continuous, differentiable, non-separable, non-scalable, unimodal
Bartels Conn continuous, non-differentiable, non-separable, non-scalable, multimodal
Beale continuous, differentiable, non-separable, non-scalable, unimodal
Bent-Cigar continuous, differentiable, non-separable, scalable, unimodal
Bird continuous, differentiable, non-separable, non-scalable, multimodal
BiSphere multi-objective
Bohachevsky N. 1 continuous, differentiable, separable, scalable, multimodal
Booth continuous, differentiable, non-separable, non-scalable, unimodal
BraninRCOS continuous, differentiable, non-separable, non-scalable, multimodal
Brent continuous, differentiable, non-separable, non-scalable, unimodal
Brown continuous, differentiable, non-separable, scalable, unimodal
Bukin N. 2 continuous, differentiable, non-separable, non-scalable, multimodal
Bukin N. 4 continuous, non-differentiable, separable, non-scalable, multimodal
Bukin N. 6 continuous, non-differentiable, non-separable, non-scalable, multimodal
Carrom Table continuous, differentiable, non-separable, non-scalable, multimodal
Chichinadze continuous, differentiable, separable, non-scalable, multimodal
Chung Reynolds unimodal, continuous, differentiable, scalable
Complex continuous, differentiable, non-separable, non-scalable, multimodal
Cosine Mixture discontinuous, non-differentiable, separable, scalable, multimodal
Cross-In-Tray continuous, non-separable, non-scalable, multimodal
Cube continuous, differentiable, non-separable, non-scalable, unimodal
Deckkers-Aarts continuous, differentiable, non-separable, non-scalable, multimodal
Deflected Corrugated Spring continuous, differentiable, non-separable, scalable, multimodal
Dixon-Price continuous, differentiable, non-separable, scalable, unimodal
Double-Sum convex, unimodal, differentiable, separable, scalable, continuous
Eason continuous, differentiable, separable, non-scalable, multimodal
Egg Crate continuous, separable, non-scalable
Egg Holder continuous, differentiable, non-separable, multimodal
El-Attar-Vidyasagar-Dutta continuous, differentiable, non-separable, non-scalable, unimodal
Engvall continuous, differentiable, non-separable, non-scalable, unimodal
Exponential continuous, differentiable, non-separable, scalable
Freudenstein Roth continuous, differentiable, non-separable, non-scalable, multimodal
Generelized Drop-Wave multimodal, non-separable, continuous, differentiable, scalable
Giunta continuous, differentiable, separable, multimodal
Goldstein-Price continuous, differentiable, non-separable, non-scalable, multimodal
Griewank continuous, differentiable, non-separable, scalable, multimodal
Hansen continuous, differentiable, separable, non-scalable, multimodal
Himmelblau continuous, differentiable, non-separable, non-scalable, multimodal
Holder Table N. 1 continuous, differentiable, separable, non-scalable, multimodal
Holder Table N. 2 continuous, differentiable, separable, non-scalable, multimodal
Hosaki continuous, differentiable, non-separable, non-scalable, multimodal
Hyper-Ellipsoid unimodal, convex, continuous, scalable
Jennrich-Sampson continuous, differentiable, non-separable, non-scalable, unimodal
Judge continuous, differentiable, non-separable, non-scalable, multimodal
Keane continuous, differentiable, non-separable, non-scalable, multimodal
Kearfott continuous, differentiable, non-separable, non-scalable, multimodal
Leon continuous, differentiable, non-separable, non-scalable, unimodal
Matyas continuous, differentiable, non-separable, non-scalable, unimodal
McCormick continuous, differentiable, non-separable, non-scalable, multimodal
Michalewicz continuous, multimodal, scalable
Periodic continuous, differentiable, non-separable, non-scalable, multimodal
Double-Sum continuous, differentiable, separable, scalable, unimodal
Price N. 1 continuous, non-differentiable, separable, non-scalable, multimodal
Price N. 2 continuous, differentiable, non-separable, non-scalable, multimodal
Price N. 4 continuous, differentiable, non-separable, non-scalable, multimodal
Rastrigin multimodal, continuous, separable, scalable
Rosenbrock continuous, differentiable, non-separable, scalable, multimodal
Schaffer N. 2 continuous, differentiable, non-separable, non-scalable, unimodal
Schaffer N. 4 continuous, differentiable, non-separable, non-scalable, unimodal
Schwefel continuous, multimodal, scalable
Shubert continuous, differentiable, non-scalable, multimodal
Six-Hump Camel Back continuous, differentiable, non-separable, non-scalable, multimodal
Sphere unimodal, separable, convex, continuous, differentiable, scalable
Styblinkski-Tang continuous, differentiable, non-separable, non-scalable, multimodal
Sum of Different Squares unimodal, continuous, scalable
Swiler2014 discontinuous, mixed, multimodal
Three-Hump Camel continuous, differentiable, non-separable, non-scalable, multimodal
Trecanni continuous, differentiable, separable, non-scalable, unimodal
Zettl continuous, differentiable, non-separable, non-scalable, unimodal

Table 1: All single objective functions currently available in smoof with their corresponding tags.
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Generators for multi-objective test functions

Evolutionary algorithms play a crucial role in solving multi-objective optimization tasks. The relative
performance of mutli-objective evolutionary algorithms (MOEAs) is, as in the single-objective case, mainly
studied experimentally by systematic comparison of performance indicators on test instances. In
the past decades several test sets for multi-objective optimization were proposed mainly by the
evolutionary computation community. The smoof package offers generators for the DTLZ function
family by Deb et al. (Deb et al., 2002), the ZDT function family by Zitzler et al. (Zitzler et al., 2000)
and the multi-objective optimization test instances UF1, . . . , UF10 of the CEC 2009 special session and
competition (Zhang et al., 2009).

The DTLZ generators are named makeDTLZXFunction with X = 1, . . . , 7. All DTLZ generators need
the search space dimension n (argument dimensions) and the objective space dimension p (argument
n.objectives) with n ≥ p to be passed. DTLZ4 may be passed an additional argument alpha with
default value 100, which is recommended by Deb et al. (2002). The following lines of code generate
the DTLZ2 function and visualize its Pareto-front by running the NSGA-II EMOA implemented in the
mco package with a population size of 100 for 100 generations (see Figure 4).

> fn = makeDTLZ2Function(dimensions = 2L, n.objectives = 2L)
> visualizeParetoOptimalFront(fn, show.only.front = TRUE)

ZDT and UF functions can be generated in a similar manner by utilizing makeZDTXFunction with
X = 1, . . . , 5 or makeUFFunction.
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Figure 4: Visualization of the approximated Pareto-front for the DTLZ2 function with two-dimensional
search and objective space.

Optimization helpers

In this section we present some additional helper methods which are available in smoof.

Filtering and building of test sets

In a benchmark study we most often need not just a single test function, but a set of test functions
with certain properties. Say we want to benchmark an algorithm on all multimodal smoof functions.
Instead of scouring the smoof documentation for suitable test functions we can make use of the
filterFunctionsByTags helper function. This function has only a single mandatory argument, namely
a character vector of tags. Hence, to get an overview of all multimodal functions we can write the
following:

> fn.names <- filterFunctionsByTags(tags = "multimodal")
> head(fn.names)
[1] "Ackley" "Adjiman" "Alpine N. 1" "Alpine N. 2" "Bartels Conn"
[6] "Bird"
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> print(length(fn.names))
[1] 46

The above shows there are 46 multimodal functions. The next step is to generate the actual smoof
functions. We could do this by hand, but this would be tedious work. Instead we utilize the
makeFunctionsByName helper function which comes in useful in combination with filtering. It can be
passed a vector of generator names (like the ones returned by filterFunctionsByTags) and additional
arguments which are passed down to the generators itself. E. g., to initialize all two-dimensional
multimodal functions, we can apply the following function call.

> fns <- makeFunctionsByName(fn.names, dimensions = 2)
> all(sapply(fns, isSmoofFunction))
[1] TRUE
> print(length(fns))
[1] 46
> print(fns[[1L]])
Single-objective function
Name: 2-d Ackley Function
Description: no description
Tags: single-objective, continuous, multimodal, differentiable, non-separable, scalable
Noisy: FALSE
Minimize: TRUE
Constraints: TRUE
Number of parameters: 2

Type len Def Constr Req Tunable Trafo
x numericvector 2 - -32.8,-32.8 to 32.8,32.8 - TRUE -
Global optimum objective value of 0.0000 at
x1 x2

1 0 0

Wrapping functions

The smoof package ships with some handy wrappers. These are functions which expect a smoof
function and possibly some further arguments and return a wrapped smoof function, which behaves
as the original and does some secret logging additionally. We can wrap a smoof function within a
counting wrapper (function addCountingWrapper) to count the number of function evaluations. This is
of particular interest, if we compare stochastic optimization algorithms and the implementations under
consideration do not return the number of function evaluations carried out during the optimization
process. Moreover, we might want to log each function value along the optimization process. This
can be achieved by means of a logging wrapper. The corresponding function is addLoggingWrapper. By
default it logs just the test function values (argument logg.y is TRUE by default). Optionally the logging
of the decision space might be activated by setting the logg.x argument to TRUE. The following listing
illustrates both wrappers by examplary optimizing the Branin RCOS function with the Nelder-Mead
Simplex algorithm.

> set.seed(123)
> fn <- makeBraninFunction()
> fn <- addCountingWrapper(fn)
> fn <- addLoggingWrapper(fn, logg.x = TRUE, logg.y = TRUE)
> par.set <- getParamSet(fn)
> lower <- getLower(par.set); upper = getUpper(par.set)
> res <- optim(c(0, 0), fn = fn, method = "Nelder-Mead")
> res$counts[1L] == getNumberOfEvaluations(fn)
[1] TRUE
> head(getLoggedValues(fn, compact = TRUE))

x1 x2 y1
1 0.00 0.00 55.60
2 0.10 0.00 53.68
3 0.00 0.10 54.41
4 0.10 0.10 52.53
5 0.15 0.15 51.01
6 0.25 0.05 50.22
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Conclusion and future work

Benchmarking optimization algorithms on a set of artificial test functions with well-known character-
istics is an established means of evaluating performance in the optimization community. This article
introduces the R package smoof, which contains a large collection of continuous test functions for
the single-objective as well as the multi-objective case. Besides a set of helper functions is introduced
which allows users to log in detail the progress of the optimization algorithm(s) studied. Future work
will lay focus on implementing more continuous test functions, introducing test functions with mixed
parameter spaces and provide reference Pareto-sets and Pareto-Fronts for the multi-objective functions.
Furthermore the reduction of evaluation time by rewriting existing functions in C(++) is planned.
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