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ABSTRACT
Evolving diverse sets of high quality solutions has gained increasing

interest in the evolutionary computation literature in recent years.

With this paper, we contribute to this area of research by examining

evolutionary diversity optimisation approaches for the classical

Traveling Salesperson Problem (TSP). We study the impact of using

different diversity measures for a given set of tours and the ability

of evolutionary algorithms to obtain a diverse set of high quality

solutions when adopting these measures. Our studies show that a

large variety of diverse high quality tours can be achieved by using

our approaches. Furthermore, we compare our approaches in terms

of theoretical properties and the final set of tours obtained by the

evolutionary diversity optimisation algorithm.
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1 INTRODUCTION
Evolutionary diversity optimisation aims to construct a set of di-

verse solutions that all have high quality but differ with respect to

important properties of the solutions. This area of research started

by Ulrich and Thiele [17, 18] has recently gained significant atten-

tion within the evolutionary computation community. It equips
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practitioners with high quality solutions of variable designs. Fur-

thermore, the methods developed can be used in the context of

machine learning and algorithm selection and configuration. Here,

evolutionary diversity optimisation is used to evolve a diverse set

of instances that can be used for training prediction models that

forecast algorithm performance on a newly given instance.

Recent studies in this area of research mainly focused on the

diversity measure to be used in the selection process when char-

acterising solutions by underlying features. Differences in feature

values as well as weighted combinations of two or more features

have been examined in the context of Travelling Salesperson Prob-

lem (TSP) instances and images [1, 5]. More recently the use of the

discrepancy measure as well as the use of popular indicators from

the area of evolutionary multi-objective optimisation have been

proposed and evaluated [13, 14]. Special mutation operators for

creating diverse sets of TSP instances have been investigated in [3].

In this paper, we examine, for the first time, TSP in the context

of evolutionary diversity optimisation. Our focus is on the diver-

sity of the tours themselves, not their qualities. The TSP has been

subject to a wide range of studies. Various evolutionary algorithms

and other heuristic search methods as well as exact solvers have

been developed over the years [6, 10, 12, 20]. Furthermore, the TSP

has been studied widely in the area of algorithm selection and

configuration (see [8] for a recent overview on this research area)

and a wide range of studies regarding important features of TSP

instances and their relation to algorithm performance have been

carried out [7, 9, 11, 16]. Evolutionary diversity optimisation has so

far only been considered for evolving TSP instances [5, 13, 14], but

not for computing a diverse set of high quality tours for a given

TSP instance.

In this paper, we examine ways to evolve a diverse set of high

quality TSP tours for a given TSP instance and population size.

A crucial aspect in our study is how to measure the diversity of

a tours population for an effective diversity-driven approach. To

establish diversity-oriented evolutionary pressure, we propose two

diversity measures: an edge distribution diversity measure and

a pairwise dissimilarity measure. We study both measures with

respect to their properties in the context of evolutionary diversity

optimisation and carry out experimental investigations showing

how evolutionary algorithms generate diverse populations using

the two measures on unweighted TSP instances where all tours are

accepted. Our results for this basic set up shows that these cases

can be handled effectively and set the basis for studies on classical

TSPlib instances [15] where tours are filtered based on qualities.
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We investigate the introduced evolutionary diversity optimisa-

tion approach using the two diversity measures on classical in-

stances, and explore the differences in results when using classical

k-opt operations where k = 2, 3, 4 for a wide range of quality

thresholds imposed on the tours. Furthermore, we study how the

population size which determines the size of the set of tours effects

the ability of the evolutionary diversity optimisation approaches to

obtain a high diversity score.

The paper is structured as follows. In Section 2, we introduce

the Traveling Salesperson Problem in the context of evolutionary

diversity optimisation and the algorithms that are part of our in-

vestigations. In Section 3, we introduce the edge diversity measure

and investigate its theoretical properties. Section 4 introduces the

pairwise distance diversity measure along with its theoretical prop-

erties. We report on our experimental investigations in Section 5

and finish with some conclusions.

2 MAXIMISING DIVERSITY IN TSP
The Traveling Salesperson problem (TSP), one of the best-known

NP-hard combinatorial optimisation problems, can be described

as follows: Given a complete graph G = (V , E) with n = |V | cities,

m = n(n − 1)/2 = |E | edges and the pairwise distances between the

cities, the goal is to compute a tour of minimal length that visits

each city exactly once and finally returns to the original city. For the

Euclidean TSP all cities lie in the Euclidean plane and the pairwise

distances between the cities are determined by the Euclidean metric.

Let V = {1, . . . ,n}. The goal is to find a permutation π : V → V
that minimises the cost function

c(π ) = d(π (n), π (1)) +
n−1∑
i=1

d(π (i), π (i + 1)),

where d(i, j) is the Euclidean distance between points i and j. Note
that the Euclidean TSP remains an NP-hard combinatorial optimi-

sation problem.

In this paper, we consider diversity optimisation for the Traveling

Salesperson Problem. For each TSP instance, our goal is to find a

set P of µ = |P | tours that is diverse with respect to some diversity

measure, while each tour meets a given quality threshold. Let I
be an individual (which constitutes a permutation of the given n
cities) and c(I ) be the cost of I . The quality threshold is met iff

c(I ) ≤ (1 + α) · OPT , where OPT is the value of an optimal tour

and α > 0 is a parameter that determines the required quality

of a desired solution. The quality criterion means that the quality

threshold is met iff I is a (1+α) approximation of an optimal solution.

We assume that the optimal tour is known for a given TSP instance.

In order to optimise the diversity for the Traveling Salesperson

Problem we employ a (µ + 1)-EA that has already been used in

the context of evolutionary diversity optimisation [1, 3, 5, 13, 14].

Our approach differs from the previous ones in terms of the con-

sidered problem and underlying diversity measure that drives the

optimisation approach.

We use Algorithm 1 to compute a diverse population consisting

of TSP tours where each individual/tour I has tomeet a given quality

criteria c(I ) according to a given threshold. Initially, the population

P is generated with µ individuals, and exactly one offspring I ′

is produced in each iteration. If the offspring I ′ does not satisfy

Algorithm 1: Diversity maximising (µ + 1)-EA

1 Initialise the population P with µ TSP tours such that

c(I ) ≤ (1 + α) ·OPT for all I ∈ P .
2 Choose I ∈ P uniformly at random and produce an offspring

I ′ of I by mutation.

3 If c(I ′) ≤ (1 + α) ·OPT , add I ′ to P .

4 If |P | = µ + 1, remove exactly one individual I , where
I = argminJ ∈P D(P \ {J }), from P .

5 Repeat steps 2 to 4 until a termination criterion is reached.

c(I ′) ≤ (1+α)·OPT , then it is discarded. Otherwise I ′ is added to the
population. Afterwards, elitist survival selection is performed with

respect to a diversity measureD. For our investigations, we consider
some function indicating overlaps between tours D : P → R, which
should be minimized to improve diversity. Thus, an individual I ∈ P
is removed such that D(P \ {I }) is minimal among all individuals

J ∈ P .
We introduce two diversity measures for evolutionary diversity

optimisation for TSP, namely an edge diversity (ED) optimisation

approach in Section 3 and a pairwise edge distances (PD) optimisa-

tion approach in Section 4. We consider vector functions instead of

traditional scalar functions, with the hope to capture more nuances

in the survival selection mechanism elegantly.

The edge diversity optimisation approach attempts to maximise

population diversity without relying on dissimilarities between

tours. Instead, it considers how frequent each edge is present in

the population, and aims to equalise these frequencies. The goal

is a population of tours containing every edge, each as close to k
times as possible for some k . The approach makes sense if edges

can be considered independent of each other, meaning each edge

is present in the population at a frequency independent of that of

other edges. This is not true for tours, thus important information

may potentially be left out.

On the other hand, the pairwise edge distances approach con-

siders solely the edge distances between all pairs of tours in the

population in terms of overlap. It attempts to simultaneously max-

imise these distances and equalising them, with an emphasis on

pairs with the least distances. In effect, it tries to increase these small

distances by moving tours away from their closest tours and possi-

bly closer to further tours, using mutation operators. Consequently,

it tends to generally increase the dissimilarities between a tour I
and the rest P \ {I }. This helps lessen the clustering phenomenon,

where tours in the population form low-diversity clusters.

The evolutionary diversity algorithm based on edge diversity

measure is compared to the evolutionary diversity optimisation

approach based on pairwise edge distances measure in two dif-

ferent settings, using simple unconstrained TSP tours and TSPlib

instances [15] in Section 5.

3 MAXIMISING EDGE DIVERSITY
In this approach, we consider diversity in terms of equal repre-

sentations of edges by tours in the population, or edge diversity. It
takes into account, for each edge, the number of tours containing

it, among the µ solutions in the population. These numbers are

referred to as edge counts. Given a population P and an edge e ∈ E,
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we denote by n(e, P) its edge count, which is defined,

n(e, P) := |{T ∈ P | e ∈ E(T )}| ∈ {0, . . . , µ}

where E(T ) ⊂ E is the set of edges used by solution T . Then in

order to maximise the edge diversity we aim to minimise the vector

N(P) = sort (n(e1, P),n(e2, P), . . . ,n(em, P))

in the lexicographic order where sorting is performed in descending

order. This is based on the idea of maximising genotypic diversity

as the mean of pairwise edge distances [21]. Since µ is fixed, we

change the mean to a sum to simplify the function

дtype(P) =
∑
T1∈P

∑
T2∈P

|E(T1) \ E(T2)|.

The maximum edge distance between two different tours is n, so the
maximum diversity is µ(µ−1)n. Let ni = n(ei , P). There are ni tours
in P sharing edge ei . Therefore, it affects ni (ni − 1)/2 pair-wise

edge distances, reducing each by 1. Since they can be added up

independently across all edges, the diversity measure is then

дtype(P) = µ(µ − 1)n +
∑
i
ni −

∑
i
n2i .

Since

∑
i ni = µn is constant, maximising diversity is reduced to

minimising

∑
i n

2

i . Given
∑
i ni being constant, the Cauchy–Schwarz

inequality implies that

∑
i n

2

i is the smallest when all ni are as close
to being equal to each other as possible. The population with such

property minimises N , meaning

argmax

P
{дtype(P)} = argmin

P
{N(P)}.

For complete graphs, the optima forN(P) can be determined based

on the following result, so the maximum diversity can be calculated.

Theorem 1. For every pair of integers µ ≥ 1 and n ≥ 3, given a
complete graphG = (V , E) where |V | = n, there is a µ-size population
P of tours such that

max

e ∈E
{n(e, P)} −min

e ∈E
{n(e, P)} ≤ 1.

Proof. We prove this by defining a way to construct such a

population. According to Theorem 1 in [2], in every complete graph

with n ≥ 3 vertices, there is a set of h =
⌊ n−1

2

⌋
pairwise edge-

disjoint Hamiltonian cycles. We denote by H the set of all such

Hamiltonian cycles in G, and E(H ) the set of all edges H contains.

We consider 2 cases: n is odd, and n is even.

Assuming n is odd, then G can be decomposed completely into

edge-disjoint tours, meaning E(H ) = E. Let µ = kh + r where

r ∈ [0,h) and r ≡ µ mod h. We construct a population P ′ by adding
all tours in H , each exactly k times. We then construct P from P ′

by adding all tours in L for any L ⊂ H where |L| = r . With this,

n(e, P) = k for all e < E(L), and n(e, P) = k + 1 for all e ∈ E(L).
Assuming n is even, then according to [2], for any perfect match-

ing M in G, the sub-graph G∗ = (V , E \ M) can be decomposed

completely into edge-disjoint tours. This means E(H ) = E \M for

some perfect matching M in G. Let T be the tour in G that goes

through all edges inM ,M ′ = E(T ) \M be another perfect match-

ing edge-disjoint withM , H ′
be the set of all edges-disjoint tours

in G ′ = (V , E \ M ′), and µ = k(h + 1) + r where r ∈ [0,h] and
r ≡ µ mod (h + 1). We construct P with the following steps:

(1) Add all tours in H , each

⌊
k+1
2

⌋
times

(2) Add all tours in H ′
, each

⌊
k
2

⌋
times

(3) Add tour T k times

(4) Add all tours in L where L ⊆ H if k is even, or L ⊆ H ′

otherwise, such that |L| = r .

The result is a population P such that |P | = µ. If k is odd, n(e, P) =
k + 1 for all e ∈ E(L) ∪M ′

and n(e, P) = k otherwise. If k is even

and positive, n(e, P) = k + 1 for all e ∈ E(L) ∪ M and n(e, P) = k
otherwise. If k = 0, n(e, P) = 1 for all e ∈ E(L) and n(e, P) = 0

otherwise. □

As demonstrated by the proof, a drawback of this approach

is that it does not necessarily prevent duplication of tours in P
when µ is sufficiently large. This is because the sum of L1-norm
distances is nomore sensitive to small distances than large distances.

Consequently, the diversity score based on it can still be large when

the population consists of low-diversity sub-populations that are

highly dissimilar. In other words, this approach is susceptible to

clustering.

In the context of EAs, this approach formulates a survival se-

lection mechanism: removing from the population the individual

I ∈ argminI ∈P {N(P \ {I })}. For an efficient implementation, we

consider an equivalent fitness function for each individual I ∈ P

nP (I ) = sort ((n(e, P))e ∈I )

with descending sorting order. The survival selection mechanism

then removes I ∈ argmaxI ∈P {nP (I )}. The equivalence can be

shown. Since elements of N(P \ {I }) and nP (I ) are in descending

order, they can each be uniquely defined by a vector (mI
i )i=1, ...,µ

and (nIj )j=1, ...,µ , respectively, wherem
I
i and n

I
i are numbers of ele-

ments inN(P \ {I }) and nP (I ) equal to i , respectively. For X ,Y ∈ P ,
if N(P \ {X }) < N(P \ {Y }) lexicographically, then there must

be j ∈ [1, µ] such thatmX
j < mY

j andmX
i = mY

i for all i ∈ (j, µ].

Fewer elements equal to j in N(P \ {X }) must be the consequence

of removing more of them, meaning nXj > nYj and nXi = n
Y
i for all

i ∈ (j, µ]. This implies that nP (X ) > nP (Y ) lexicographically. On
the other hand, it is trivial to prove that N(P \ {X }) = N(P \ {Y })
implies nP (X ) = nP (Y ). This means

argmin

I ∈P
{N(P \ {I })} = argmax

I ∈P
{nP (I )}.

With this method, the survival selection mechanism is consisted of

three phases:

(1) Calculating the edge counts table: O(µn)
(2) Calculating nP (I ) for all I : O(µn logn)
(3) Finding and removing I = argmaxI ∈P {nP (I )}: O(µn)

The complexity of the survival selection is thenO(µn logn). On the

other hand, the mechanism’s complexity when using дtype(P \ {I })
as fitness values is O(µ2n + µ3) (O(µ2n) from calculating the edge

distances table and O(µ2) from calculating дtype from said table

for each tour). Asymptotically speaking, our proposal can be faster

per iteration in many cases.

4 EQUALISING PAIRWISE EDGE DISTANCES
One way to remedy the clustering phenomenon is to increase edge

distances between highly similar tours, potentially at the cost of
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decreasing edge distances between highly dissimilar tours. This

method essentially equalises the tours’ pairwise edge distances. As

such, we present another approach that discourages clustering by

emphasising uniform pairwise edge distances while maximising

diversity. We reformulate the edge distance as edge overlap

oXY = |E(X ) ∩ E(Y )| = n − |E(X ) \ E(Y )|,∀X ,Y ∈ P .

The aim is then to minimise the vector

D(P) = sort

(
(oXY )X ,Y ∈P

)
in the lexicographic order where sorting is performed in descending

order. This approach simultaneously maximises diversity via min-

imising

∑
X ,Y ∈P oXY , while also maximising uniformity via equal-

ising oXY . It can be the case that D(P) < D(P ′) and дtype(P) <
дtype(P ′).

Example 1. Consider a problem instance with a complete graph
of n = 5 vertices and µ = 3. Let there be four tours T1 = (1, 3, 5, 4, 2),
T2 = (1, 5, 4, 3, 2), T3 = (1, 2, 5, 3, 4) and T4 = (1, 5, 2, 3, 4), and two
populations P1 = {T1,T2,T3} and P2 = {T1,T2,T4}, we have

• дtype(P1) = 18 < дtype(P2) = 20

• D(P1) = (2, 2, 2) < D(P2) = (3, 2, 0).

It is clear that P1 maximises edge distances uniformity and P2 max-
imises дtype . Furthermore, we can see that among all 3-size popula-
tions of maximum дtype , P2 maximises edge distances uniformity.
Likewise, among all 3-size populations of maximum edge distances
uniformity, P1 maximises дtype . This example shows that maximis-
ing дtype and edge distances uniformity at the same time can be
non-trivial.

In such cases, it is likely that oXY are more equalised in P than in

P ′. Moreover, the more дtype(P) is larger than дtype(P ′), the more

likely thatD(P) < D(P ′). This means evolving with loweringD(P)
as the evolutionary force tends to increase theдtype score. However,
the maximisation performance is potentially compromised by the

emphasis on edge distances uniformity, so the дtype score can

decrease and its maximum is sometimes unreachable. Given the

drawback of this diversity measure, this may not be undesirable.

For a problem instance with graph G and integer µ, assuming

there is a population P∗ with maximum дtype

2

∑
X ,Y ∈P ∗

oXY = µ(µ − 1)n −max

P
{дtype(P)},

and maximum edge distances uniformity

max

X ,Y ∈P
{oXY } − min

X ,Y ∈P
{oXY } ≤ 1,

then P∗ ∈ argminP {D(P)}. When G is complete and µ ≤
⌊ n−1

2

⌋
,

this assumption is true according to the proof for Theorem 1, and

oXY are all zero in P∗.
Like the ED approach, this approach determines the survival

mechanism of the EA: removing from the population the individual

I ∈ argminI ∈P {D(P \{I })}. The samemethod can be used to derive

an efficient implementation of O(µ2n + µ2 log µ) time complexity

for this mechanism. Consider the fitness function

dP (I ) = sort

(
(oIX )X ∈P\{I }

)
with descending sorting order, it can be shown that argminI {D(P \
{I })} = argmaxI {dP (I )}. As before, we can uniquely define D(P)

and dP (I ) with (mi )i=1, ...,n and (nIi )i=1, ...,n , respectively. This im-

plies that D(P \ {I }) is defined by (mi − nIi )i=1, ...,n . For X ,Y ∈ P ,
if D(P \ {X }) < D(P \ {Y }) lexicographically, then it must be that

there is j ∈ [1,n] such that nXj > nYj and nXi = n
Y
i for all i ∈ (j,n].

This means dP (X ) > dP (Y ). Furthermore,D(P \{X }) < D(P \{Y })
obviously implies dP (X ) = dP (Y ). Intuitively, this implementation

removes I that has the smallest edge distance to P \ {I }, defined by

the minimum edge distance between I and all tours in P \ {I }. The
lexicographic ordering of vectors allows an elegant way to resolve

draw cases: comparing the second minimum distances, the third,

the fourth and so on. The result is the guaranteed non-increasing

edge distance between I ′ and P \ {I ′} for all other tours I ′ as well.
The consequence is convergence to a solution population, in which

each tour is reasonably dissimilar to the rest. This approach aligns

closely with the diversity formulated in [19], with edge distance

being the dissimilarity metric. Since µ is fixed, we introduce an

additional normalization factor.

div(P) =
∑
T ∈P

dist(T , P \ {T }) =
1

µn

∑
T ∈P

min

X ∈P\{T }
{|E(T ) \ E(X )|} .

Note that the difference between дtype and div is the focus on the

minimum edge distances, the two measures would be the same

ifmin were replaced by sum ormean. We hypothesise that edge

distances uniformity is strongly positively correlated to div . This
is explored further in Section 5.

5 EXPERIMENTAL INVESTIGATIONS
We perform different series of experiments to gain insights into

the process of evolving diverse TSP tours. In all experiments our

input is a complete graphG = (V , E) with real-valued cost function

w : E → R+. We consider 6 variants of algorithm 1, differing

in their mutation operators and survival selection mechanisms.

The mutation operators are 2-OPT, 3-OPT, 4-OPT, and the survival

selection mechanisms are based on the two proposed approaches.

5.1 Unconstrained Diversity Optimisation
In this setting our focus is on diverse TSP tours without constraints

on tours’ qualities. As such, we study our approaches with ran-

dom initial populations. We experiment with all combinations of

n = {50, 100, 200, 500} and µ = {3, 10, 20, 50}. For each (n, µ) com-

bination, 30 populations are randomly generated as initial popu-

lations for all EA variants, controlling for the initialisation factor.

Furthermore, with the established guarantee for optima, a termina-

tion criterion is such optima are reached. As for minimising D(P),
another criterion

max

X ,Y ∈P
{oXY } − min

X ,Y ∈P
{oXY } ≤ 1

is added forming a bound on the optima. An additional limit of µn2

iterations is imposed on the experiments. Also, since optimal дtype
scores can be calculated, we record the scores in percentages for

ease of comparison across all settings.

According to Tables 1, 2, all variants seem to reliably achieve

optima in all cases where µ ≤
⌊ n−1

2

⌋
, except for 4-OPT variants

seemingly stuck in local optima when n = 50 and µ = 20. In the

other hard cases, none ever reached the optima within the time
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Table 1: Comparison in terms of diversity (gtype), the number of iterations (#iter) and results of statistical testing (stat) between
variants with ED approach in unconstrained cases. The Kruskal-Wallis test and the Bonferroni correctionmethod [4] are used
on #iter. X+ means the measure is larger than the one for variant X , X− means smaller and X ∗ means no difference.

n µ
2-OPT(1) 3-OPT(2) 4-OPT(3)

gtype std # iter std stat gtype std # iter std stat gtype std # iter std stat

50

3 100.00% 0.00 104.50 59.19 2
+, 3+ 100.00% 0.00 68.60 35.67 1

−, 3∗ 100.00% 0.00 54.37 24.28 1
−, 2∗

10 100.00% 0.00 1635.80 485.88 2
∗, 3∗ 100.00% 0.00 1808.43 484.96 1

∗, 3∗ 100.00% 0.00 1736.60 545.36 1
∗, 2∗

20 100.00% 0.00 25383.03 8594.81 2
−, 3− 99.97% 0.02 49881.60 471.00 1

+, 3∗ 99.93% 0.02 50000.00 0.00 1
+, 2∗

50 99.99% 0.00 125000.00 0.00 2
∗, 3∗ 99.95% 0.00 125000.00 0.00 1

∗, 3∗ 99.93% 0.01 125000.00 0.00 1
∗, 2∗

100

3 100.00% 0.00 170.83 98.50 2
∗, 3+ 100.00% 0.00 137.53 69.76 1

∗, 3∗ 100.00% 0.00 102.13 58.69 1
−, 2∗

10 100.00% 0.00 1901.73 632.60 2
∗, 3+ 100.00% 0.00 1598.80 386.85 1

∗, 3+ 100.00% 0.00 1305.63 343.38 1
−, 2−

20 100.00% 0.00 8422.40 1742.96 2
−, 3∗ 100.00% 0.00 9902.63 1984.39 1

+, 3∗ 100.00% 0.00 9414.27 2018.82 1
∗, 2∗

50 99.95% 0.00 500000.00 0.00 2
∗, 3∗ 99.86% 0.00 500000.00 0.00 1

∗, 3∗ 99.82% 0.01 500000.00 0.00 1
∗, 2∗

200

3 100.00% 0.00 401.03 213.80 2
+, 3+ 100.00% 0.00 254.80 111.06 1

−, 3∗ 100.00% 0.00 197.60 78.85 1
−, 2∗

10 100.00% 0.00 3350.47 958.53 2
+, 3+ 100.00% 0.00 2261.10 570.16 1

−, 3∗ 100.00% 0.00 1888.87 510.91 1
−, 2∗

20 100.00% 0.00 10189.73 2233.72 2
+, 3+ 100.00% 0.00 8959.07 2242.66 1

−, 3∗ 100.00% 0.00 7901.73 1286.07 1
−, 2∗

50 100.00% 0.00 76856.37 14056.12 2
−, 3− 100.00% 0.00 102039.53 17118.06 1

+, 3− 100.00% 0.00 132837.73 25315.99 1
+, 2+

500

3 100.00% 0.00 974.33 509.02 2
+, 3+ 100.00% 0.00 631.20 267.24 1

−, 3∗ 100.00% 0.00 560.77 332.16 1
−, 2∗

10 100.00% 0.00 6608.33 2298.31 2
∗, 3+ 100.00% 0.00 5281.23 1729.61 1

∗, 3+ 100.00% 0.00 3537.07 965.71 1
−, 2−

20 100.00% 0.00 20888.53 5343.92 2
+, 3+ 100.00% 0.00 15007.67 3265.35 1

−, 3+ 100.00% 0.00 11821.93 3388.06 1
−, 2−

50 100.00% 0.00 93280.70 17697.95 2
+, 3+ 100.00% 0.00 67817.73 13010.55 1

−, 3∗ 100.00% 0.00 64425.13 9267.66 1
−, 2∗

Table 2: Comparison in terms of diversity (gtype), the number of iterations (#iter) and results of statistical testing (stat) between
variants with PD approach in unconstrained cases. Tests and notations used are the same as in Table 1.

n µ
2-OPT(1) 3-OPT(2) 4-OPT(3)

gtype std # iter std stat gtype std # iter std stat gtype std # iter std stat

50

3 100.00% 0.00 83.43 42.67 2
∗, 3+ 100.00% 0.00 67.03 31.22 1

∗, 3∗ 100.00% 0.00 59.53 39.87 1
−, 2∗

10 100.00% 0.00 1493.13 380.08 2
∗, 3∗ 100.00% 0.00 1605.20 472.96 1

∗, 3∗ 100.00% 0.00 1748.20 659.40 1
∗, 2∗

20 100.00% 0.00 26794.30 7051.89 2
−, 3− 99.96% 0.02 49955.43 244.10 1

+, 3∗ 99.92% 0.02 50000.00 0.00 1
+, 2∗

50 99.89% 0.01 125000.00 0.00 2
∗, 3∗ 99.76% 0.01 125000.00 0.00 1

∗, 3∗ 99.72% 0.01 125000.00 0.00 1
∗, 2∗

100

3 100.00% 0.00 211.83 83.51 2
+, 3+ 100.00% 0.00 109.27 61.33 1

−, 3∗ 100.00% 0.00 107.07 54.83 1
−, 2∗

10 100.00% 0.00 1853.67 411.67 2
+, 3+ 100.00% 0.00 1563.40 412.61 1

−, 3∗ 100.00% 0.00 1403.73 458.76 1
−, 2∗

20 100.00% 0.00 8377.83 1259.16 2
∗, 3− 100.00% 0.00 9648.03 2079.70 1

∗, 3∗ 100.00% 0.00 9895.17 2165.04 1
+, 2∗

50 99.94% 0.00 500000.00 0.00 2
∗, 3∗ 99.83% 0.01 500000.00 0.00 1

∗, 3∗ 99.77% 0.01 500000.00 0.00 1
∗, 2∗

200

3 100.00% 0.00 451.60 249.54 2
+, 3+ 100.00% 0.00 285.97 155.56 1

−, 3∗ 100.00% 0.00 209.80 79.16 1
−, 2∗

10 100.00% 0.00 3161.17 751.84 2
+, 3+ 100.00% 0.00 2271.67 624.29 1

−, 3+ 100.00% 0.00 1769.40 384.22 1
−, 2−

20 100.00% 0.00 9776.93 1925.45 2
+, 3+ 100.00% 0.00 7550.90 1390.00 1

−, 3∗ 100.00% 0.00 7371.20 1388.57 1
−, 2∗

50 100.00% 0.00 77706.33 13011.40 2
−, 3− 100.00% 0.00 106661.57 19402.75 1

+, 3− 100.00% 0.00 132255.53 30508.53 1
+, 2+

500

3 100.00% 0.00 828.90 320.42 2
+, 3+ 100.00% 0.00 552.70 276.51 1

−, 3∗ 100.00% 0.00 499.20 258.36 1
−, 2∗

10 100.00% 0.00 7036.17 1475.13 2
+, 3+ 100.00% 0.00 4686.20 972.09 1

−, 3∗ 100.00% 0.00 3806.03 971.33 1
−, 2∗

20 100.00% 0.00 19258.20 4942.90 2
+, 3+ 100.00% 0.00 13667.33 3053.62 1

−, 3∗ 100.00% 0.00 12294.77 2767.25 1
−, 2∗

50 100.00% 0.00 80004.13 9644.84 2
+, 3+ 100.00% 0.00 69792.40 13370.98 1

−, 3∗ 100.00% 0.00 63174.17 10205.59 1
−, 2∗

limits. This suggests that when close to the optima, the proba-

bility of increasing дtype in an iteration decreases substantially

with increasing µ/n. Also, in such cases, all variants with 2-OPT

mutation operator achieve higher дtype score than those with 3-

OPT, which in turn outperform those with 4-OPT. Furthermore, for

(n, µ) = (50, 20), all 2-OPT variants always reaches the optimum,

while 3-OPT variants struggle and 4-OPT variants fail entirely. This

indicates that large-step mutation operators are prone to being

stuck in local optima when the population is close to maximum

дtype .

Additionally, minimising N(P) and minimising D(P) seem to

produce the similar final дtype scores within similar numbers of

iterations in all cases, given the same mutation operator used. This

indicates that minimising D(P) also tends to maximise дtype when
all tours are accepted. However, in the hard cases, the PD approach

achieves somewhat lower дtype scores than ED across all variants.

This suggests that the trade-offs between edge diversity and edge

distances uniformity are non-trivial near optima.

Another observation is that with small enough µ/n, 2-OPT vari-

ants tend to take more iterations than 3-OPT variants, which in turn

tend to terminate later than 4-OPT variants. When µ/n is larger
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Figure 1: Scatter plots of all 8640 runs on the TSPlib in-
stances. Each point corresponds to a final population after
one run. The Pearson correlation coefficient between ς and
div is −0.9815 with p < 0.0001.

than some number, the trend seems to revert. However, the indica-

tion for this observation is weak since no statistically significant

difference can be seen in many cases.

5.2 Constrained Diversity Optimisation
Now we consider TSP instances from the famous TSPlib, specifi-

cally eil51, eil76, eil101. For these experiments, we use the provided

optimal tour for each instance, initialise P with µ copies of it and

perform diversity maximisation subject to c(I ) ≤ (1 + α) ·OPT for

all I ∈ P . I. e., we accept tours only if they deviate in length by a

factor of at most (1 + α) from the optimal tour length OPT. We set

up the instances for our experiments with µ = {5, 10, 20, 50} and

α = {0.05, 0.2, 0.5, 1.0}. For each instance, we run each algorithm

variant 30 times and record the final population. As before, дtype
scores are reported in percentages, since these instances involve

complete graphs and Theorem 1 applies. In addition, we record

ς(P) =
(
maxX ,Y ∈P {oXY } −minX ,Y ∈P {oXY }

)
/n to observe uni-

formity in edge distances between tours; lower scores indicate

higher uniformity. All scores are averaged over 30 runs.

According to Table 3, дtype scores achieved predictably increase

with increasing α , albeit with diminishing return. On the other

hand, ς scores tend to increase with increasing µ, and dramati-

cally decrease with increasing α . In terms of mutation operators,

2-OPT seems to be the best performer overall, while 3-OPT and

4-OPT perform similar. Furthermore, all things equal, minimising

N(P) tends to produce slightly higher дtype scores and noticeably

lower ς scores than minimising D(P). The PD approach seems to

better capitalise on increasing α , improving edge distances uni-

formity faster. Moreover, the edge distances uniformity of the PD

approach’s output populations is less susceptible to compromise

due to increasing µ within this range. These phenomena align with

the remark that the ED approach focuses on дtype while the PD
approach compromises it for edge distances uniformity.

Additionally, we investigate the correlation between edge dis-

tances uniformity and the diversity score div(P). Figure 1a shows a
strong negative linear correlation between div(P) and ς(P) across
all cases. This suggests that focusing on edge distances uniformity,

while maximising дtype , is effective in maximising div . Combined

(a) ED, α = 0.05 (b) PD, α = 0.05

(c) ED, α = 0.2 (d) PD, α = 0.2

(e) ED, α = 0.5 (f) PD, α = 0.5

(g) ED, α = 1.0 (h) PD, α = 1.0

Figure 2: Visualised edge counts from resulted populations
in eil51 cases with µ = 50. The optimal tour is marked with
red edges. Darker edges have higher counts.

with earlier observations, we can conclude that the PD approach

is much more likely to make a better compromise between max-

imising дtype and maximising div . This is illustrated in Figure 1b,

indicating that for each α value, the PD approach maintains higher

div scores across all µ values without significantly sacrificing дtype
scores.

The visuals in Figure 2 show that the PD approach results in

fewer zero-count edges than the ED, regardless of α . It also results

in higher maximum edge counts than the ED in those cases. This is

because minimisingN(P) flattens the edge counts distribution from
the top down with the descending sorting order. The implication is

that the counts distribution among the lower end is not guaranteed

improvement, especially among the zero-count. On the other hand,

minimisingD(P), while not directly dealingwith edge counts, tends
to equalise this distribution while relaxing minimising higher count

edges. Consequently, higher maximum edge counts are achieved,

but fewer edges have high counts and more edges have low non-

zero counts. Consequently, individuals are more likely to contain

more unique edges (edges with count 1), which is also a mark
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Table 3: Comparison in terms of diversity (gtype) and pairwise edge distances ranges (ς) among all variants of the EA on
TSPlib instances. Better values with statistical significance (based onWilcoxon rank sum tests with 95% confidence threshold)
between ED and PD are bold-faced.

µ α
ED PD

2-OPT 3-OPT 4-OPT 2-OPT 3-OPT 4-OPT

gtype ς gtype ς gtype ς gtype ς gtype ς gtype ς

e
i
l
5
1

3 0.05 34.27% 68.37% 36.23% 67.78% 28.95% 74.05% 32.07% 69.54% 35.95% 66.14% 29.78% 71.96%

0.2 70.78% 31.83% 67.93% 35.03% 63.68% 40.46% 71.11% 30.20% 65.95% 35.75% 63.12% 38.56%

0.5 93.83% 8.43% 90.85% 11.05% 90.78% 11.37% 93.62% 7.12% 90.26% 11.18% 90.37% 10.59%

1 99.89% 0.13% 99.83% 0.26% 99.80% 0.33% 99.80% 0.33% 99.74% 0.65% 99.76% 0.52%

10 0.05 31.82% 79.67% 33.64% 78.43% 27.79% 82.88% 29.37% 78.24% 31.60% 75.95% 27.65% 79.61%
0.2 63.04% 70.39% 60.60% 67.12% 57.78% 63.40% 60.99% 44.90% 59.23% 47.39% 55.99% 51.31%
0.5 83.14% 30.85% 81.34% 36.67% 81.29% 37.58% 82.00% 20.33% 80.12% 23.01% 79.87% 23.99%
1 95.06% 10.26% 94.14% 11.76% 94.19% 11.63% 94.57% 7.58% 93.30% 8.50% 93.16% 8.50%

20 0.05 32.52% 95.23% 32.86% 91.37% 27.89% 90.85% 29.20% 82.42% 31.23% 79.08% 26.45% 83.53%
0.2 62.32% 92.09% 59.98% 91.57% 57.46% 91.70% 59.30% 49.15% 57.84% 51.37% 54.53% 55.29%
0.5 80.95% 59.02% 79.24% 63.27% 79.60% 64.84% 79.03% 25.29% 77.69% 27.84% 77.32% 29.08%
1 92.17% 19.87% 91.41% 22.42% 91.58% 21.31% 90.97% 11.83% 90.28% 12.42% 90.24% 12.75%

50 0.05 32.66% 100.00% 33.23% 100.00% 28.01% 100.00% 29.81% 85.88% 31.75% 82.48% 26.93% 85.95%
0.2 63.26% 99.48% 61.52% 97.78% 58.92% 96.99% 59.68% 53.59% 58.36% 57.12% 55.04% 59.80%
0.5 80.74% 92.35% 79.56% 90.59% 79.80% 88.76% 79.15% 29.67% 78.12% 32.29% 77.94% 33.66%
1 91.65% 48.95% 91.25% 52.68% 91.33% 48.37% 90.60% 15.69% 90.42% 15.75% 90.42% 16.67%

e
i
l
7
6

3 0.05 30.12% 71.84% 30.06% 72.89% 24.20% 78.60% 29.04% 71.97% 29.80% 71.89% 24.08% 76.97%

0.2 70.23% 31.67% 63.98% 38.90% 60.39% 42.02% 69.05% 32.15% 63.17% 37.76% 59.11% 42.06%

0.5 94.66% 6.49% 90.63% 11.45% 91.05% 11.14% 94.72% 5.88% 90.82% 9.74% 90.29% 10.61%

1 99.91% 0.22% 99.63% 0.57% 99.80% 0.48% 99.90% 0.09% 99.65% 0.53% 99.69% 0.57%

10 0.05 28.52% 79.39% 29.33% 78.95% 23.14% 83.60% 27.09% 78.73% 28.35% 79.17% 22.87% 82.59%

0.2 61.56% 57.19% 58.62% 56.75% 56.01% 60.13% 59.57% 44.91% 56.41% 49.08% 53.67% 52.24%
0.5 84.71% 28.60% 81.03% 36.45% 81.92% 33.64% 82.94% 18.99% 79.54% 23.07% 79.45% 23.90%
1 95.92% 7.94% 94.39% 9.96% 94.78% 9.43% 95.32% 5.83% 93.66% 7.72% 93.74% 7.72%

20 0.05 28.74% 88.95% 28.85% 88.68% 23.69% 88.42% 26.96% 81.49% 27.38% 81.97% 22.25% 85.18%
0.2 61.19% 92.76% 58.37% 92.89% 56.06% 91.45% 58.50% 48.29% 55.41% 53.16% 52.20% 56.67%
0.5 82.35% 53.90% 79.64% 65.39% 80.32% 58.68% 79.72% 23.73% 77.58% 26.84% 77.40% 28.42%
1 93.03% 16.10% 91.95% 20.04% 92.37% 18.11% 91.67% 10.26% 90.67% 11.58% 90.78% 11.84%

50 0.05 28.84% 100.00% 28.41% 99.91% 23.99% 98.95% 27.01% 84.47% 27.77% 85.09% 22.52% 87.28%
0.2 62.42% 98.95% 59.32% 98.73% 56.80% 98.07% 58.16% 52.54% 55.73% 56.80% 52.29% 60.35%
0.5 81.53% 86.62% 79.74% 90.39% 80.35% 88.03% 79.05% 27.50% 77.21% 31.01% 77.08% 32.63%
1 91.73% 42.19% 91.18% 46.62% 91.39% 38.55% 90.32% 13.68% 89.84% 14.78% 90.02% 14.91%

e
i
l
1
0
1

3 0.05 35.84% 65.97% 36.79% 65.74% 31.21% 70.99% 35.69% 65.71% 35.49% 65.51% 30.24% 70.69%

0.2 72.61% 29.60% 67.50% 34.69% 65.30% 36.40% 71.29% 29.11% 65.56% 35.08% 63.99% 36.83%

0.5 95.03% 5.91% 91.86% 9.64% 92.29% 9.27% 94.72% 5.78% 91.60% 8.98% 91.63% 9.11%

1 99.79% 0.40% 99.49% 0.76% 99.72% 0.50% 99.81% 0.36% 99.57% 0.66% 99.85% 0.23%

10 0.05 31.88% 76.27% 33.44% 74.19% 28.88% 78.88% 31.36% 73.37% 32.60% 72.05% 27.77% 76.93%
0.2 63.70% 49.64% 60.78% 54.16% 58.69% 55.38% 62.44% 40.89% 59.29% 44.95% 56.49% 47.95%
0.5 85.14% 25.78% 82.55% 30.43% 82.75% 33.00% 83.84% 17.52% 81.64% 20.20% 80.78% 21.55%
1 96.29% 6.80% 95.07% 9.08% 95.25% 8.75% 95.97% 4.95% 94.37% 6.77% 94.37% 6.86%

20 0.05 32.80% 85.28% 33.52% 85.31% 28.74% 85.97% 30.58% 76.63% 31.78% 75.38% 27.21% 79.90%
0.2 63.37% 92.48% 60.27% 89.70% 58.75% 89.90% 60.83% 44.36% 58.11% 48.91% 55.30% 51.16%
0.5 82.93% 56.17% 80.68% 57.49% 81.19% 55.68% 81.04% 21.22% 79.08% 24.19% 79.05% 25.21%
1 93.71% 14.98% 92.62% 17.99% 93.06% 15.91% 92.28% 9.01% 91.31% 10.23% 91.42% 10.43%

50 0.05 34.32% 100.00% 33.17% 99.47% 28.96% 99.01% 30.26% 79.44% 31.34% 78.75% 26.91% 82.71%
0.2 63.92% 98.48% 60.95% 97.92% 59.39% 97.66% 59.76% 48.25% 57.89% 52.24% 54.86% 55.74%
0.5 81.65% 86.30% 79.96% 90.23% 80.51% 85.87% 79.34% 24.85% 78.20% 27.36% 77.85% 28.84%
1 91.58% 34.69% 90.88% 45.38% 91.20% 36.60% 90.01% 12.34% 89.60% 13.17% 89.80% 13.43%
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(a) ED, α = 5%

(b) PD, α = 5%

(c) ED, α = 20%

(d) PD, α = 20%

Figure 3: Visualised tour populations from resulted populations in eil51 cases with µ = 10 and 2-OPT as mutation operator.
Red edges are shared by at least two tours in the population, and blue ones are unique to the tour. Left-to-right is the ascending
tour length order.

of highly diverse populations. As Figure 3 shows, with small α ,
the populations generated by the ED approach tend to contain

duplicated tours and tours without unique edges. In contrast, tours

produced by the PD approach tend to exhibit more uniqueness and

stand out from the rest.

6 CONCLUSION
Evolutionary diversity optimisation aims to generate a set of diverse

solutions where all solutions meet given quality criteria. We have

introduced and examined for the first time evolutionary diversity

optimisation for a classical combinatorial optimisation problems.

We introduced two diversity measures that can be used for the

Traveling Salesperson Problem and evaluated their performance

when used for simple population-based elitist evolutionary algo-

rithms. The results show that both measures can be optimized well

in the unconstrained case where all tours meet the quality criterion.

Furthermore, our investigations for TSPlib instances point out the

increase in terms of diversity that can be obtained when relaxing

the quality constraint determined by the required approximation

ratio. We also highlighted some differences between populations

generated by these two approaches.

The focus of this paper has been on the introduced diversity

measures for diversity optimisation of the TSP and their perfor-

mance in simple population-based elitist evolutionary algorithms.

For future research, it would be interesting to incorporate these

measures into state of the art evolutionary algorithms for the TSP

and evaluate their performance.
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