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ABSTRACT
Evolutionary algorithms (EAs) are general-purpose problem solvers

that usually perform an unbiased search. This is reasonable and

desirable in a black-box scenario. For combinatorial optimization

problems, often more knowledge about the structure of optimal

solutions is given, which can be leveraged by means of biased

search operators. We consider the Minimum Spanning Tree (MST)

problem in a single- and multi-objective version, and introduce a

biased mutation, which puts more emphasis on the selection of

edges of low rank in terms of low domination number. We present

example graphs where the biased mutation can significantly speed

up the expected runtime until (Pareto-)optimal solutions are found.

On the other hand, we demonstrate that bias can lead to exponential

runtime if “heavy” edges are necessarily part of an optimal solution.

However, on general graphs in the single-objective setting, we show

that a combined mutation operator which decides for unbiased or

biased edge selection in each step with equal probability exhibits

a polynomial upper bound – as unbiased mutation – in the worst

case and benefits from bias if the circumstances are favorable.
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1 INTRODUCTION
Evolutionary algorithms (EAs) are randomized general-purpose

problem solvers that mimic principles from Darwinian evolution

theory. These algorithms have proven successful in a wide range

of applications, in particular, in tackling (multi-objective) combi-

natorial NP-hard optimization problems [5, 7]. The theoretical

understanding of EAs’ working principles has made tremendous

progress in the past decades with respect to expected runtime anal-

ysis, fixed-budget analysis and general convergence aspects [1, 28].

The problem considered here is a classical combinatorial opti-

mization problem with countless applications in engineering, logis-

tics and many other fields: theMinimum Spanning Tree (MST) prob-

lem. Given an undirected edge-weighted graph, the goal is to find

a spanning sub-graph which is a tree and has minimal total weight

among all such trees. When each edge is assigned multiple – usually

conflicting – weights, one is interested in a set of multi-objective

compromise solutions (moMST). The single-objective MST problem

is well-understood and solvable in polynomial time by well-known

algorithms, e. g., the algorithm by Kruskal [18]. In contrast, the

moMST is proven to be NP-hard [29] and all deterministic ap-

proaches may suffer from potential intractability problems. Here,

many successful evolutionary multi-objective algorithms have been

proposed (see, e. g., [2, 17, 31]).

In the area of runtime analysis of bio-inspired computation, span-

ning tree problems have obtained significant attention. The classical

MST problem has been investigated for simple single-objective ap-

proaches of EAs [23] and ant colony optimization [24]. Furthermore,

it has been shown that a multi-objective formulation of the prob-

lem can lead to significantly faster evolutionary algorithms [22].

For the moMST, it has been shown in [21] that a multi-objective

evolutionary algorithm can compute a 2-approximation in pseudo-

polynomial time. Furthermore, the results given in [23] have been

revisited in the context of multiplicative drift analysis [11] and

improved results for special graph classes have been presented in

[26, 30].

Usually evolutionary algorithms perform an unbiased search

due to their frequent application in settings where knowledge on

the fitness function can only be gained by fitness function eval-

uations. However, if domain knowledge on the composition of

(Pareto-)optimal solutions is available one should incorporate this

knowledge into mutation operators to speed up the evolution con-

siderably [9, 10, 13–15]. Neumann and Wegener [21] introduced an

asymmetric mutation operator on bit strings where the probability

for a 1-bit to flip depends on the number of 1-bits in the solution

and likewise for 0-bits. Here, on average, the number of 1-bits in a
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solution is not changed which is beneficial for the minimum span-

ning tree. In fact, the authors were able to obtain runtime speedups

adopting this operator for the MST. Jansen and Sudholt [15] further

investigated this operator. They give examples where asymmetry is

beneficial and where it is not. Doerr et al. [9, 10] tackle the Eulerian

cycle problem with asymmetric mutation and prove much slower

runtime bounds in comparison to symmetric mutation. For the

classical MST problem it is legitimate to assume that edges of low

weight/rank are more likely to be in an MST than edges of high

weight/rank. Such knowledge can also be leveraged in terms of

biased mutation as demonstrated impressively by Raidl et al. [25]

on random graphs. The authors showed that mutation, where the

edge selection probability is biased towards lower rank edges, can

lead to immense speedups for evolutionary algorithms for different

sub-graph selection problems, inter alia the MST. Likewise, for the

moMST problem, non-dominated spanning trees are more likely

composed of edges which are dominated by few other edges, i. e.,

edges of low non-domination level or domination number. A recent

study by Bossek et al. [3] confirms this assumption empirically. Both

Raidl et al. and Bossek et al. consider the simple edge-exchange

mutation on spanning trees: an edge is added to a spanning tree

and an edge is dropped from the unique introduced cycle to obtain

another spanning tree. Here, the authors introduce bias by modify-

ing the edge selection probability favoring low-rank edges. Both

studies serve as a starting point and motivation for our work.

In this paper we consider biased mutation for evolutionary al-

gorithms for the single- and multi-objective MST problem and

compare with unbiased counterparts. Specifically, we examine the

effects of mutation bias on the time complexity of simple EAs un-

til they hit an optimal solution or cover the Pareto-front for the

first time. We show that bias can be both boon and bane depend-

ing on the structure of optimal solutions on example graphs. I. e.,

there are situations where introduced bias leads to improved upper

bounds where we save a factor of n if the ranks of edges which are

part of optimal solutions are O(n). Contrarily, if heavy edges are

frequent members of optimal solutions, bias towards lightweight

edges may entail an exponential deterioration in the expected run-

ning time. Luckily, in the single-objective setting, we can combine

the best of both worlds. A simple modification, which decides for

unbiased or biased mutation in each step independently with prob-

ability 1/2, leads to a guaranteed polynomial runtime bound of

O(n3 log(n ·wmax)) for general graphs wherewmax is the maximum

edge weight in the graph. At the same time this strategy benefits

from bias if the circumstances allow for it saving on a factor of n.
After having motivated our work we introduce the (mo)MST

problem formally, establish a vocabulary and introduce the consid-

ered algorithms in Section 2. Sections 3 and 4 deal with our runtime

analysis in the single-objective and multi-objective MST setting,

respectively. Section 5 wraps up the work with some concluding

remarks and outlook on future work.

2 PRELIMINARIES
LetG = (V ,E) denote a graph with vertex setV and edge set E. For
convenience, we write n = |V | and m = |E |. A spanning tree of

graphG is a sub-graphG ′ = (V ,E ′) if and only if there exists exactly
one path between any two vertices in G ′. In the single-objective

Algorithm 1 (1+1) EA

1: Let T be a random spanning tree on G = (V ,E).
2: Set the edge-selection strategy.

3: while optimum not found do
4: T ′ ← T
5: k ← 1 + Pois(1)

6: Based on the selection strategy, assign the probability q(e)
to each edge e ∈ E.

7: for k times do
8: Choose e ∈ E with probability q(e).
9: T ′ ← T ′ ∪ {e}
10: Drop an edge from the resulting cycle in T ′ uniformly

at random.

11: if T ′ has no worse fitness than T then
12: T ← T ′

scenario, each edge e ∈ E is assigned a positive weightw(e) and the
goal is to find a spanning tree with minimum total weight, called

Minimum Spanning Tree (MST). In the multi-objective scenario,

each edge is assigned two weightsw(e) = (w1(e),w2(e)).
1
The goal

is to find a spanning tree such that the total weight in both weight

functions is minimized simultaneously. This may result in a set of

incomparable trade-offs which are not necessarily better than each

other in bothweights. In order to capture this aspect mathematically

we adopt the well-known notion of Pareto dominance [6] – a core

concept in multi-objective optimization – to establish a partial order

of spanning trees. Letwi (T ) =
∑
e ∈T wi (e).We say spanning treeT1

weakly (Pareto-)dominates spanning tree T2, denoted by T1 ⪰ T2, if
w1(T1) ≤ w1(T2) ∧w2(T1) ≤ w2(T2). The strong dominance holds

when at least one of the inequalities is strict and it is denoted by

T1 ≻ T2.T1 is called non-dominated if there is no other spanning tree

that dominates T1. Likewise, w(T1) = (w1(T1),w2(T1)) is the non-
dominated objective vector. The union set of all non-dominated

spanning trees is called Pareto set, its image in objective space

is called the Pareto front, and each solution is termed a Pareto(-

optimal) solution or multi-objective MST (moMST). Our goal is

to find a non-dominated spanning tree for each non-dominated

objective vector. In the following, we present the algorithms that

we use to tackle these problems.

2.1 Algorithms
We consider the performance of the (1+1) EA (see Algorithm 1)

facing the single-objective MST problem. It is initialized with a

random spanning tree T . There have been different studies on

generating random spanning trees such as a rather classical ran-

domized algorithm by Broder [4], with expected running time of

O(n logn) for almost all graphs or more recently by Madry et al.

[19]. Afterwards, the algorithm sets an edge-selection strategy, i. e.,
the edge-selection probability distribution that is used in Line 6.

Next, the algorithm sets k = Pois(1) + 1, the number of edges for

the mutation step, where Pois(1) stems from a Poisson distribution

with rate λ = 1. The constant ensures that we always perform at

least one mutation and avoids counting iterations that does not

1
Clearly, more than two objective functions are possible. Since we restrict our analysis

to bi-objective problems in this paper we refrain from introducing the general form in

favor of less notation overhead.
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Figure 1: Triangular-tailed graph G with a chain of p = n/4
triangles and a giant component GC = Kn/2. [23]

Algorithm 2 GSEMO

1: Initialize population P with a random spanning tree on G =
(V ,E).

2: Set the edge-selection strategy.

3: while not all Pareto-optimal solutions found do
4: Choose T ∈ P uniformly at random.

5: T ′ ← T
6: k ← 1 + Pois(1)

7: Based on the selection strategy, assign the probability q(e)
to each edge e ∈ E.

8: for k times do
9: Choose e ∈ E with probability q(e).
10: T ′ ← T ′ ∪ {e}
11: Drop an edge from the resulting cycle in T ′ uniformly

at random.

12: if {T ′′ ∈ P | T ′′ ≻ T ′} = ∅ then
13: P = P \ {T ′′ ∈ P | T ′ ⪰ T ′′} ∪ {T ′}

generate new solutions. The same approach has been used in [27].

In the mutation step, an edge is selected according to its probability

q(e) and is added to T . As the mutant is no longer acyclic after the

edge insertion, removing a randomly chosen edge from the unique

cycle is required to reestablish the tree property. This guarantees

that the resulting graph is a spanning tree. The algorithm repeats

this procedure k times to achieve a new solution T ′ and replaces T
by T ′ ifw(T ′) ≤ w(T ).

We consider three versions of Algorithm 1 where the difference

is in the edge-selection strategy.

(1+1) EA-UM refers to the unbiased variant of (1+1) EA in which

always each edge is selected with uniform probability q(e) = 1/m.

We also consider (1+1) EAwith biasedmutation called (1+1) EA-BM,

in which the mutation probability of edge e has been set based on

the approximation of the probability that e appears in the MST. The

approximation, which is the result of experimental analyses, gives

higher probability to the edges with lower weights to be selected.

The details on how to calculate the approximation is given in the

following sections. Note that for these versions of (1+1) EA, the

edge-selection strategy does not change during the optimization

process and has been set at the beginning of the algorithm. In other

words, the edge-selection strategy deterministically assigns values

of q(e) (see line 6 in Algorithm 1), i. e., either uniform or biased

mutation with probability 1. Additionally, we analyze a “hybrid”

(1+1) EA, called (1+1) EA-MM (MM for mixed mutation), where

in each iteration of the outer loop the algorithm decides by fair

coin-tossing which strategy (biased or unbiased) to use.

For the multi-objective scenario, our runtime analysis is based on

the global simple evolutionary multi-objective algorithm (GSEMO;

see Algorithm 2). GSEMO stores a set of non-dominated solutions

in the population P , which is initialized with a single random span-

ning tree. In each iteration, it selects a solution T from P uniformly

at random and sets the number of the edges to be added in the

mutation step: one plus a random value sampled from a Poisson dis-

tribution with λ = 1. The mutation step is the same as the (1+1) EA

and guarantees that the resulting graphT ′ is also a spanning tree. If
there is no solution in P that strongly dominates T ′, T ′ is added to

P and all the solutions thatT ′ weakly dominates are removed from

P . Similar to the single-objective setting, two versions are subject

to analysis: GSEMO-UM with uniform edge-selection probability

q(e) = 1/m and its biased counterpart GSEMO-BM, in which edges

that are dominated by fewer edges in E have higher probability to

be selected for the mutation (see Section 4 for details).

3 SINGLE-OBJECTIVE PROBLEM
In this section, we consider two types of triangular-tailed graphs,

G1 and G2, which are structurally the same but are different in the

weights of the edges. A triangular-tailed graph consists of a clique,

GC
, with ν = n/2 vertices and a triangular tail, GT

, with η = n/4
triangles (Figure 1). In both G1 and G2, each triangle has 2 edges

with weights 2a and one edge with weight 3a, where a := n2. The
weights of edges in the clique are 4a and a inG1 andG2, respectively.

Neumann and Wegener proved that (1+1) EA with bit-string

representation, which flips each bit with probability 1/m and is

initialized with a random graph, finds the MST of the triangular-

tailed graphs in Ω(n4 logn) expected time [23], i. e. the triangular-

tailed graph has been used as the worst case example to prove

the lower bound. This bound is proven for a fitness function that

prevents the algorithm to accept solutions other than spanning trees

after achieving the first spanning tree. Moreover, the most time

consuming phase in their proof is finding the MST from an achieved

spanning tree. Hence, their proof also holds even if (1+1) EA is

initialized with a spanning tree.

Using the same worst case example, we prove that (1+1) EA-UM

finds the MST in Θ(n2 logn). Afterwards, we improve this bound

for graph G1, in which the edges of GT
are lighter than the edges

of the clique, by enhancing the biased mutation in (1+1) EA-BM.

Inspired by the study of Raidl et al. [25], we use the ranking strategy

to perform the biased mutation. To this aim, we assign rank r ,
1 ≤ r ≤ |E |, to each edge based on its placement in ascending order

of the weights, ties are broken uniformly at random. For each edge

e ∈ E with rank r , we approximate the probability of e to appear in

the MST with p(r ) = ar . Then, we set

q(e) = q
b
(e) =

√
p(r )∑m

i=1
√
p(r )

,

as the probability of selecting e for the mutation step, where a =
n−1
n . We show that (1+1) EA-BM finds the MST of G1 in expected

timeΘ(n logn). However, it takes exponential time for (1+1) EA-BM

to find the MST of G2, in which the edges of GT
are heavier than

the edges ofGC
. In the following proofs, let b = B(T ) denote the set

of bad selected edges in the tail of solution T , which have weight

3a.
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Lemma 3.1. (1+1) EA-BM and (1+1) EA-UM do not increase the
value of b during the optimization process.

Proof. Let T ′ be the result of k subsequent edge insertions into

T by mutation. Any changes in the structure of the solution in

GC
does not change the weight and neither b. It is similar when

an edge with weight 2a is added and the other edge with weight

2a is removed from the cycle. Therefore, we only consider the

number of changes in GT
that the swap between 2a and 3a edges

happen in the same triangle. Let bi and b
d
denote the number

of swaps that increase and decrease w(T ), respectively. We have

|B(T ′)| = |B(T )| + bi − bd and w(T ′) = w(T ) + a(bi − bd). On the

other hand, the algorithms accept T ′ if and only if w(T ′) ≤ w(T ),
which implies that bi ≤ b

d
. Thus, in an accepted move, the number

of bad edges added toT is less than or equal to the number of added

edges with weight 2a. □

The following theorem considers the performance of (1+1) EA-UM

on triangular-tailed graphs.

Theorem 3.2. (1+1) EA-UM finds the MST of triangular-tailed
graph G ∈ {G1,G2} in Θ(n2 logn) steps with probability 1 − o(1).

Proof. Here, we follow the proof of Claim 10 in [23]. Note that

we can focus on GT
since the initial solution is a random spanning

tree and all weights in GC
are equal. Moreover, the MST contains

all 2a edges and no 3a edge. Since (1+1) EA-UM does not increase

b (Lemma 3.1), we need to calculate the expected time to achieve

b = 0. In order to reduce b by one, the algorithm needs to insert

a 2a edge and remove the 3a edge from the resulting cycle. The

probability of adding only one edge is the probability of zero events

in the Poisson distribution, which is equal to e−1, and there are b
specific 2a edges that need to be added. Since the maximum size

of a consequent cycle is 3, removing the 3a edge happens with

the constant probability 1/3. Hence, the probability of swapping

a 2a edge with the 3a edge in a required triangle is b/(3em) that
happens in expected time 3em/b by the waiting-time argument. Let

T
(1+1) EA-UM

denote the first hitting time that (1+1) EA-UM finds

the MST. Since b is at most n, we obtain the following upper bound

on the expected time with probability 1 − o(1)

E[T
(1+1) EA-UM

] ≤

n∑
k=1

3e ·
m

k
≤ 3en2Hn

≤ 3en2(logn + 1) = O(n2 logn).

Now we prove the lowe bound. Similar to the argument in the

proof of the coupon collector’s theorem (see, e. g., [20]), the lower

bound 3en2(logn + 1) − cn2 holds with the probability 1 − e−e
c
,

if (1+1) EA-UM only adds one edge in each iteration. Setting c =
logn
2

, the lower bound for the expected time is Ω(n2 logn) with
probability 1 − o(1). Let k-step refer to the iterations that k triangle

edges are chosen for the mutation step and note that k ≤ 3n/4. It is
enough to bound the contribution of k-steps on b during αn2 logn
iterations for a constant α > 0. The probability of a k-step for a

constant k ≥ 1 is

pUMk =
e−1

(k − 1)!
·

(
3n/4

k

)
·

(
1

m

)k
= θ (nkm−k ) = θ (n−k ),

where the first term is the probability of k − 1 events in the Poisson

distribution with λ = 1. Note that (1+1) EA-UM always adds at least

one edge and pUM
0
= 0. Within Θ(n2 logn) iterations, the expected

number of 2-steps is O(logn) and there are o(1) k-steps with k > 2.

Each 2-step reduces b by at most 2. On the other hand, in a random

spanning tree, each triangle contains a bad edge with probability

2/3. Thus, b is at least n/8 = Θ(n)with probability 1−e−Ω(n), using
a Chernoff bound with δ = 2/8. Hence, with the probability 1−o(1),
the expected time for (1+1) EA-UM to find the MST is

E[T
(1+1) EA-UM

] = Θ
©­«
b−2 logn∑

k=1

m

k

ª®¬ = Θ
©­«

b∑
k=1

n2

k
−

b∑
k=b−2 logn

n2

k

ª®¬
= Θ

©­«
b∑

k=1

n2

k
−

2 logn∑
k=1

n2

k

ª®¬ =
Θ(n)∑
k=1

n2

k
−

O (logn)∑
k=1

n2

k

= Θ(n2 logn) −O(n2 log logn) = Θ(n2 logn).

□

Now,we consider the performance of (1+1) EA-BMon the graphs

G1 and G2.

Lemma 3.3. Using the biased mutation with probability q
b
(e), the

probability of selecting edge e with rank r = O(n) is Θ(1/n).

Proof. Considering the denominator of q
b
(e), we have

m∑
i=1

ai/2 =

√
a − a(m+1)/2

1 −
√
a

=
(1 − o(1)) ·

√
a

1 −
√
a

=
(1 − o(1)) ·

√
n − 1

√
n −
√
n − 1

= Θ(n).

Since r = O(n), for the numerator we have 1 ≥ (1 − 1

n )
r/2 ≥

(1 − 1

n )
cn ≥ e−c

′

, where c < c ′ are constants. We conclude that

q
b
(e) = 1−o(1)

2ec′n
= Θ(1/n). □

Lemma 3.3 shows that the edges of GT
in G1 are more likely to

be chosen in (1+1) EA-BM than in (1+1) EA-UM. In the following

theorem, we show the effect of this property on the performance

of (1+1) EA-BM.

Theorem 3.4. (1+1) EA-BM finds the MST ofG1 inΘ(n logn)with
probability 1 − o(1).

Proof. The proof is analogous to the proof of Theorem 3.2.

However, we use Lemma 3.3 to tighten the probability of selecting

edges fromGT . Hence, the expected waiting for the beneficial event
in which a bad edge is removed from the tail is Θ(n/b). Thus, we
obtain an upper bound of O(n logn).

To prove the lower bound, similar to the proof of Theorem 3.2,

we use the argument of coupon collector’s theorem with a similar

approach used in [12]. However, it must be noted that we argue on

the minimum number of edge selections such that all the bad edges

are chosen for the mutation at least once. According to Lemma

3.3, the probability of selecting an edge in GT
is at least 1/cn for a

constant c . Moreover, we have the initial number of bad edges is at

least n/8 after the random initialization with probability 1 − o(1).
Note that (1+1) EA-BM selects at least one edge in each iteration.
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Therefore, (1 − 1/cn)t is the probability of no triangle edge is

selected after t iterations. Consequently, the probability of flipping

at least one triangle edge in t iterations is 1 − (1 − 1/cn)t that

implies (1 − (1 − 1/cn)t )n/8 is the probability of selecting all of the

n/8 bad edges at least once. Hence, the probability that at least

one bad edge has never been selected in t iterations is 1 − (1 −

(1 − 1/cn)t )n/8. Finally, the probability that (1+1) EA-BM does not

attempt to remove at least one bad edge in t = (n − 1) lnn steps is

1 − (1 − (1 − 1/cn)(n−1) lnn )n/8 ≥ 1 − e−1/8c .
Therefore, (1+1) EA-BM needs Ω(n logn) iterations to find the

MST with probability of 1 − e−1/8c − o(1), which completes the

proof. □

Although (1+1) EA-BM efficiently finds the MST of G1, the next

argument shows that, in graphs similar to G2, finding the MST

takes exponential time.

Lemma 3.5. The probability of selecting an edge with rank r =
Ω(n2) is exponentially small.

Proof. According to the proof of Lemma 3.3, it is enough to

show that the enumerator of p(r ) is exponentially small when r >
cn2 for some constant c . To this aim, we have(

1 −
1

n

) r
2

≤

(
1 −

1

n

) c
2
n2

≤ e−
c
2
n = O(e−n ).

□

Theorem 3.6. The expected time for (1+1) EA-BM to find the MST
of G2 is exponential.

Proof. In G2, edges of G
T
have higher weights than the edges

of GC
. Since there are Ω(n2) edges in GC

, the rank of edges of GT

is Ω(n2). Using the result of Lemma 3.5, the probability of selecting

any of the edges ofGT
isO(e−n ). Hence, the expected time to select

each of these edges for the mutation step is Ω(en ). This implies

that, in expectation, (1+1) EA-BM needs exponential time to reduce

the value of b by one; consequently, it needs exponential time to

find the MST of G2. □

In the following, we analyze the effect of using both mutation

strategies simultaneously in (1+1) EA-MM. Note that in every t
iterations, (1+1) EA-MMperforms t/3 uniformmutations and t−t/3
biased mutations with probability of 1 − o(1). This implies that

repeating (1+1) EA-MM c ≥ 4 times, the results of Theorems 3.2 and

3.4 also hold for the (1+1) EA-MM. However, since (1+1) EA-MM

benefits from the uniform mutation in half of the iterations, it is

also able to find the MST of G2 in Θ(n2 logn).
This is themotivation to analyze the performance of (1+1) EA-MM

on general graphs. For arbitrary graph G, letw(T i ) be the weight
of T i , the spanning tree achieved by the algorithm in iteration i ,
and T ∗ be the minimum spanning tree. We define

д(T i ) = w(T i ) −w(T ∗),

the weight gap that the algorithm needs to cover to reach the MST.

Note that a MST is not necessarily unique but its weight is unique.

We also redefine 1-step as an iteration that the algorithm adds only

one edge and removes a random edge from the resulting cycle.

Using a similar representation of Lemma 1 in [23], the following

lemma presents how 1-steps contribute to reduce the value of д(T ).

Lemma 3.7. Let solution T be an arbitrary spanning tree. There
exists a set of k ∈ {1, · · · ,n − 1} different accepted 1-steps that if
happen in any order transform T to T ∗ and reduce w(T ) by д(T )/k
on average.

Proof. Let E(T ) and E(T ∗) denote the edges ofT andT ∗, respec-
tively. Using an existence proof, Kano [16] proved that there is a bi-

jectionα : E(T ∗)\E(T ) → E(T )\E(T ∗) such thatw(e) ≤ w(α(e)) and
adding e toT creates a cycle that includesα(e). Letk = |E(T ∗)\E(T )|.
Swapping all the edges e ∈ E(T ∗) \ E(T ) with α transforms T to T ∗

and reduces д(T ) to zero. Thus, each of these good swaps decreases

the value of д(T ) on average by д(T )/k . Moreover, any 1-step that

does a good swap is accepted since it results in a solution that is

not worse than T . □

Using the result of Lemma 3.7 we prove a performance bound

on (1+1) EA-MM on arbitrary graphs.

Theorem 3.8. Starting from a random spanning tree, (1+1) EA-MM
finds the minimum spanning tree in expected timeO(n3 log(n ·wmax)),
wherewmax is the maximum weight of the edges.

Proof. Let ∆(д) = д(T i ) − д(T i+1) be the contribution of the

algorithm in reducing the value ofд in one iteration. The probability
of having a 1-step equals to the probability of having zero events in

the Poisson distribution which is 1/e . Thus, with the probability of

1/(2enm), the uniform strategy causes a 1-step such that a specific

edge e is added and a specific edge from the created cycle is removed.

From Lemma 3.7 there are k good swaps. Therefore, the probability

of a good swap in a 1-step with uniform strategy is k/(2enm). Since
a good swap reduces the value of д(T ) on average by д(T )/k , for
∆(д) we have

E[∆(д)] =
д(T )

k
·

k

2enm
.

Since the the maximum value of д(T ) is n · wmax, using the

multiplicative drift theorem [8] with δ = 1/(2enm), the expected
first hitting time that д(T ) = 0 is upper bounded by

ln(n ·wmax) + 1(
1

2enm

) = O(n3 log(n ·wmax)).

□

Although (1+1) EA-MM guarantees a polynomial expected time

to find T ∗ for any arbitrary graph, experiments by Raidl et al.

showed that in many random graphs, all the edges of T ∗ have
rank O(n). This implies that the expected time for (1+1) EA-MM

to find the MST improves to O(n2 log(n ·wmax)) in many applica-

tions, since the probability performing a beneficial step improves

to 1/(2em).

4 MULTI-OBJECTIVE PROBLEM
In this section we consider the multi-objective version of the min-

imum spanning tree problem. Firstly, we introduce the ranking

of the edges in multi-objective space and experimentally show a

considerably good approximation for the appearance of edges in

an moMST according to their ranks. Using the approximation, we

analyze the performance of GSEMO-UM and GSEMO-BM dealing

with two different types of graphs.
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4.1 Experimental Approximation
The work by Raidl. et al. [25] considered the single-objective sce-

nario and lays the groundwork for our empirical study. As a re-

minder: the authors showed that low rank edges have a much

higher probability to be part of MSTs. In the setting of multiple

conflicting objectives similar assumptions are reasonable, i. e., that

non-dominated spanning trees are more likely composed of “low-

rank” edges for an appropriate definition of “rank”. In a recent

study Bossek et al. [3] considered different ranking definitions in

the bi-objective case. More precisely, they considered (1) the non-

domination level and (2) the domination number of an edge to

define the rank and established a total order on the edges with low

ranks being favored. Similar to Raidl’s work, they conducted an em-

pirical study and estimated the probability pm(r ) of edges to be part
of at least one spanning tree as a function of its rank r for different
graph classes (more details in the following). They, next, empirically

evaluated the convergence speed of biased edge selection strate-

gies in comparison to the baseline of random uniform selection.

They obtained significant improvements, particularly in the case

where the domination number d(e) = |{e ′ ∈ E |w(e ′) ⪰ w(e)}| was
adopted for the definition of rank and the probability of choosing

an edge with edge r for insertion was set to

qm
b
(r ) =

pm(r )∑
r p

m(r )
,

i. e., proportional to its probability of appearance in non-dominated

solutions. We catch up on their work and illustrate empirically, that

β · ((n − 1)/n)r – similar to Raidl’s results – is indeed a good approx-

imation for the probability pm(r ). In line with Bossek et al., our em-

pirical study is based on different graph types reflecting different lev-

els of density and edge weight distribution. Complete graphs (CEG

for Complete Edge Generation) with n nodes placed uniformly at

random in [0, 100]2 are studied alongside graphs where the intercon-

nection of nodes is based on a Delauney triangulation of the point

cloud in the Euclidean plane (Delauney Edge Generation). Note

that in the latter casem = Θ(n). Edge weightswi (e), i = 1, 2 either

both are realizations of uniform random numbers stemming from

a U[5, 200]-distribution (RNDRND; in consistence with [17, 31])

or the first weight corresponds to the Euclidean distance between

the nodes in the plane and the second weight is sampled from a

U[5, 200] distribution (EUCRND). For each graph type, i. e., CEG-

RNDRND, CEG-EUCRND, DEG-RNDRND and DEG-EUCRND we

consider n ∈ {25, 50, 100, 250}.
The estimation of pm(r ) follows [3]. Here, we describe the pro-

cedure in a nutshell and refer the interested reader to the original

work. First consider a single random graph G = (V ,E) of a given
graph type and problem size n. For each edge e , we calculate the
number of non-dominated spanning trees that e is part of 2, termed

the share s(e), and estimate the probability of r -ranked edges by

the average of all shares of the corresponding rank. We repeat this

process for 1000 random graphs of the corresponding graph type

and n ∈ {25, 50, 100, 250} and use the mean probability over all

1000 instances as the final estimate for pm(r ).

2
The set of non-dominated spanning trees is approximated by a simple weighted-

sum approach minimizing λw1(T ) + (1 − λ)w2(T ) for equidistantly sampled λ =
k/1000, k = 0, . . . , 1000.

Figure 2 shows the estimations ofpm(r ), the probability of rank-r
edges to be part of at least one non-dominated spanning tree, sep-

arated by graph class and number of nodes. We present results

for n ∈ {100, 250} due to space limitations
3
. The estimations are

accompanied by fitted regression models of the form β · ((n − 1)/n)r .
We observe that the model mostly adheres quite well to the data.

These observations are supported by the results of a regression

analysis. Here, the R2 values – a measure for the fraction of vari-

ance in the data explained by the model – takes values close to 1

with a minimum of 0.8893 for CEG-EUCRND graphs with n = 250

nodes. Additionally, the root mean squared error (RMSE) values,

i. e., the mean deviation of the model predictions to the data, are

very low consistently. All in all the experiments support our para-

metric model assumption for different dense and sparse graphs. As

a consequence, we use this empirical estimate for our upcoming

theoretical runtime analysis.

4.2 Theoretical Analysis
Motivated by the experimental results, we usepm(r ) = β ·((n − 1)/n)r

as the approximation for the probability of an edge with domination

number r appears in the moMST. As β consistently takes values

in (0, 1) throughout the experiments, we drop this constant factor

in subsequent investigations. Note that we break rank ties ran-

domly. Hence, we havem = |E | different edges withm different

probabilities. Using Bossek et al. [3] approach, for each edge e with
domination number r we set

q(e) = qm
b
(r )

for the probability of choosing e in the mutation step in Algorithm 2.

Using the same arguments as in Lemma 3.3, we have the following

lemma for biased mutation in the multi-objective setting.

Lemma 4.1. Using the biased mutation with probability q(e) =
qm
b
(r ), the probability of selecting edge e with domination count r =

O(n) is Θ(1/n).

Again, we consider the triangular-tailed graph in two versions

Gm

1
and Gm

2
. Both graphs contain η triangles in the tail. In each

triangle, the two upper edges have weights (1, 2) while the bottom

edge has weight (2, 1). The difference lies in the composition of the

clique part GC
. Here, in Gm

1
all edges have the same weight (k,k),

k > 2 while in Gm

2
there exists a subset GS = {e1, . . . , el } ⊆ GC

of

size l ≤ (n/2 − 1) with w(e) = (u,u), u > 2, for each edge e ∈ GS

andw(e) = (k,k), k > u + n + 1, for all remaining clique edges. We

also assume that the edges in GS
do not create any cycle. Let us

at this point retain the following: every non-dominated spanning

tree of Gm

1
contains an arbitrary spanning tree on GC

as a sub-

graph. In contrast, inGm

2
every non-dominated spanning tree must

necessarily contain GS
as a sub-graph.

Let us briefly state our goals here. We denote by T ∗ the set of

non-dominated spanning trees for a given graph and by F = w(T ∗)
its image, i. e., the set of all Pareto-optimal objective vectors. We

seek to locate for each f ∈ F a spanning tree T ∗ ∈ T ∗.

Lemma 4.2. For both Gm

1
and Gm

2
we have |F | = Θ(n).

3
Omitted results for n ∈ {25, 50} show the same patterns.
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Proof. Let us first consider the clique part. InGm

1
each spanning

tree ofGC
has equal weight, we may fix an arbitrary one. InGm

2
the

non-dominated spanning tree of GC
must include all the edges of

GS
. Thus, for each graph type Gm

1
and Gm

2
, the contribution of the

edges of GC
in objective values are the same. Since the triangular

tail is identical for both Gm

1
and Gm

2
, the following observations

hold for both versions. Every non-dominated spanning tree contain

exactly two edges of each triangle, in particular at least one edge

with weight (1, 2), i. e. there are at least η edges of weight (1, 2) in

each Pareto solution. Hence, for each non-dominated spanning tree

the weight of the triangular part is

η ·

[
1

2

]
+ r ·

[
1

2

]
+ (η − r ) ·

[
2

1

]
=

[
3η − r
3η + r

]
,

where 0 ≤ r ≤ η is the number of triangles that have two upper

edges in the spanning tree. Together with our observations in the

clique part, this implies r ∈ Θ(n) and, as a direct consequence,

|F | = Θ(n). □

Let f0, f1, . . . , fp ∈ F be the objective vectors in ascending

order of the first weight (and thus in descending order of the second

weight). In the following, we show that we can easily move between

Pareto-optimal spanning trees with distinct weights. We use the

notation d(T ,T ′) := |T \T ′ | and speak about distance of spanning

trees in terms of the necessary edge exchange operations needed

to transform T to T ′.

Lemma 4.3. For each non-dominated spanning tree T in Gm

1
and

Gm

2
with w(T ) = fi , 0 ≤ i ≤ η, there is a non-dominated spanning

tree T ′ with d(T ,T ′) = 1 such that
• w(T ′) = fi+1 for 0 ≤ i ≤ η − 1 or
• w(T ′) = fi−1 for 1 ≤ i ≤ η.

Proof. We only prove the first case. The proof for the other

case is similar. Consider a non dominated spanning tree T with

w(T ) = fi , 0 ≤ i ≤ η − 1.T contains exactly (η − i) edges of weights
(2, 1) in the triangular-tail part. Now we obtain T ′ by including

one of the η − (η − i) = i remaining edges of weight (2, 1) and

dropping a (1, 2) weighted edge on the resulting cycle. It follows

thatw(T ′) = fi+1 and clearly d(T ,T ′) = 1. □

Lemma 4.3 states that once we found a single non-dominated

spanning tree it is easy to obtain the others.

Theorem 4.4. On Gm

1
, given an initial spanning tree T , GSEMO-

UM needs expected time O(n3 logn) to cover the Pareto front.

Proof. LetT be a spanning tree withw(T ) = fi and b(T ) denote
the number of triangle edges with weight (2, 1) forT . We shall refer

those edges bottom edges in the following. Since,w(T ) = fi clearly
b(T ) = i . By Lemma 4.3 we can move to a tree with weight vector

fi+1 or fi−1 by adding or removing a bottom edge. In GSEMO (see

Algorithm 2) achieving f (i + 1) happens with probability at least(
1

i + 1

)
·

(
e−1 ·

(η − i)

m

)
·

(
2

3

)
=

2(η − i)

3em(i + 1)
.

557



GECCO ’20, July 8–12, 2020, Cancun, Mexico Vahid Roostapour, Jakob Bossek, and Frank Neumann

Here, the first term is the probability to select the individualT with

w(T ) = fi such that T ′ with w(T ′) = fi+1 is not included in the

population yet, the second term is the probability for the 0 event

of a Pois(λ = 1) distribution, i. e., to add exactly one edge to the

sampled solution, and the third term is the probability to remove

one of the non-bottom edges from the resulting cycle. Adopting

waiting time arguments, the expected number of iterations until

fi+1 is achieved is bounded from above by 3em(i+1)/2(p−i). Hence,
the total time until the population of GSEMO contains each one

solution for each Pareto-optimal objective vector fi , i = 0, . . . ,n
– only by adding bottom edges and starting with a solution with

trade-off f0 in the worst case – is bounded by the sum

η−1∑
i=0

3em(i + 1)

2(η − i)
=

3em

2

·

η−1∑
i=0

(i + 1)

(η − i)
≤

3em

2

·

η−1∑
i=0

η

(η − i)

=
3emη

2

· Hη = O(n
3
logn).

On the other hand, to include fi−1, the algorithm must choose a

non-bottom edge from the triangles that include one, with probabil-

ity i/(em), and remove the bottom edge with probability 1/3. Thus,

the probability of this event is i/3em(i + 1), i. e., the expected num-

ber of iterations for such event happen is 3em(i + 1)/i . Therefore –
only by decreasing the number of bottom edges and starting from

fη in the worst case – the expected time for GSEMO to achieve all

the objective vectors in the Pareto front is upper bounded by the

sum

η∑
i=1

3em(i + 1)

i
= 3em ·

η∑
i=1

(i + 1)

i
≤ 3em ·

η∑
i=1

η

i

= 3emη · Hη = O(n
3
logn).

All together, since one of the cases is always available, the total

upper bound is O(n3 logn). □

Next we consider the performance of GSEMO-UM on Gm

2
. In an

arbitrary moMST T of Gm

2
, let s = |GS ∩T | denote the number of

optimal edges GS
in T .

Lemma 4.5. For two solutions T1,T2 ∈ Gm

2
, T1 ≻ T2 if and only if

s1 > s2.

Proof. Considering the proof of lemma 4.2, the difference be-

tween the objective values of T1 and T2 that is caused because of

the chosen tail edges is at most n. On the other hand, increasing

s improves both objective values by at least n + 1. Thus any solu-

tion that has larger s have strictly better objective value in both

objectives. □

Lemma 4.5 results in the fact that all the solutions in the popu-

lation set of GSEMO have the same value of s . Note that GSEMO

starts with a spanning tree and any offspring is also a spanning

tree.

Theorem 4.6. On Gm

2
, given an initial spanning tree T , GSEMO-

UM needs expected time O(n3 logn) to cover the Pareto-front.

Proof. We consider two phases in this proof. The first phase is

to find the solution T with s = l , i. e. T contains all the edges of GS
.

After this phase, we know that any offspring is a Pareto-optimal

solution. The next phase is to cover the whole Pareto front.

Note that all the solutions in the current population have the

same value of s < l . Thus, the probability of choosing solution T
with highest s is 1. To increase s , the algorithm adds edge e ∈ GS \T
with probability (l − s)/m. Adding e can cause a cycle with size at

most n. In the worst case, there is only one edge in the cycle that

can be removed without removing another optimal edge. Hence, a

beneficial removing happens with probability of 1/n. Therefore, the

probability of increasing s by 1 is at least e−1 · l−sm ·
1

n , where e
−1

is

the probability that GSEMO adds only one edge. Such mutation step

happens afterO(mn/(l−s)) iterations in expectation. The minimum

initial value for s is zero and l is at most n − 1. Thus, the expected
time for GSEMO to finish phase one is upper bounded by

l−1∑
i=0

mn

e(l − s)
≤ n3

n∑
i=1

1

n
= O(n3 logn).

In the second phase, GSEMO does not accept a solution with

s < l . Hence, the same argument as in Theorem 4.4 proves that

GSEMO finishes the second phase inO(n3 logn) expected time and

this completes the proof. □

Now we consider GSEMO-BM algorithm with biased mutation

that select the edges with q(e) = qm
b
(r ). The number of edges in

the tail of Gm

1
and Gm

2
is the same and equal to 3n/4. In both of the

graphs, these edges dominate every other edges and consequently

have lower non-domination ranks, i. e. each edge have a unique

random rank within {1, · · · , 3n/4}. Moreover, in Gm

2
, edges of GS

dominate other edges of GC
. Hence, ranks 3n/4, · · · , (3n/4) + l

belong to the edges of GS
. Therefore, as Lemma 4.1 shows, all the

edges that belong to the moMSTs inGm

1
andGm

2
have the selection

probability Θ(1/n). Using the same arguments as in Theorems 4.4

and 4.6, the following result hold for the performance of GSEMO

on the graphs Gm

1
and Gm

2
.

Corollary 4.7. On Gm

1
and Gm

2
, given an initial spanning tree T ,

GSEMO-BM needs expected timeO(n2 logn) to cover the Pareto-front.

5 CONCLUSION
We performed a rigorous asymptotic runtime analysis of evolu-

tionary algorithms with biased mutation for the classic Minimum

Spanning Tree problem. Bias in this context means that edges of

low weight in the single-objective case and of low domination num-

ber in the multi-objective case are assigned a higher probability

of mutation. Our findings reveal that bias is blessing and curse at

the same time. While a significant time complexity speedup can be

achieved in some cases, bias may also lead to exponential expected

optimization time if edges of high rank are part of optimal solu-

tions. We showed that using the biased and unbiased mutations

simultaneously is the key to avoid the extreme cases of bias. We

will consider the generalization of the achieved results to more

general graph classes in future work.
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